Decoherence-protected spin-photon quantum gates in a hybrid semiconductor-superconductor circuit

2015 ◽  
Vol 92 (6) ◽  
Author(s):  
Li Wang ◽  
Tao Tu ◽  
Bo Gong ◽  
Guang-Can Guo
Keyword(s):  
2013 ◽  
Vol 11 (01) ◽  
pp. 1350015 ◽  
Author(s):  
CHI-KWONG LI ◽  
REBECCA ROBERTS ◽  
XIAOYAN YIN

A general scheme is presented to decompose a d-by-d unitary matrix as the product of two-level unitary matrices with additional structure and prescribed determinants. In particular, the decomposition can be done by using two-level matrices in d - 1 classes, where each class is isomorphic to the group of 2 × 2 unitary matrices. The proposed scheme is easy to apply, and useful in treating problems with the additional structural restrictions. A Matlab program is written to implement the scheme, and the result is used to deduce the fact that every quantum gate acting on n-qubit registers can be expressed as no more than 2n-1(2n-1) fully controlled single-qubit gates chosen from 2n-1 classes, where the quantum gates in each class share the same n - 1 control qubits. Moreover, it is shown that one can easily adjust the proposed decomposition scheme to take advantage of additional structure evolving in the process.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Hayk L. Gevorgyan ◽  
Nikolay V. Vitanov
Keyword(s):  

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Boyan T. Torosov ◽  
Nikolay V. Vitanov
Keyword(s):  

2019 ◽  
Vol 17 (03) ◽  
pp. 1950020
Author(s):  
Abderrahim Benmachiche ◽  
Ali Sellami ◽  
Sherzod Turaev ◽  
Derradji Bahloul ◽  
Azeddine Messikh ◽  
...  

Fundamental quantum gates can be implemented effectively using adiabatic quantum computation or circuit model. Recently, Hen combined the two approaches to introduce a new model called controlled adiabatic evolutions [I. Hen, Phys. Rev. A, 91(2) (2015) 022309]. This model was specifically designed to implement one and two-qubit controlled gates. Later, Santos extended Hen’s work to implement [Formula: see text]-qubit controlled gates [A. C. Santos and M. S. Sarandy, Sci. Rep., 5 (2015) 15775]. In this paper, we discuss the implementation of each of the usual quantum gates, as well as demonstrate the possibility of preparing Bell’s states using the controlled adiabatic evolutions approach. We conclude by presenting the fidelity results of implementing single quantum gates and Bell’s states in open systems.


Nature ◽  
2012 ◽  
Vol 484 (7392) ◽  
pp. 82-86 ◽  
Author(s):  
T. van der Sar ◽  
Z. H. Wang ◽  
M. S. Blok ◽  
H. Bernien ◽  
T. H. Taminiau ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document