reversible logic
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 145)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-32
Author(s):  
Vikraman Choudhury ◽  
Jacek Karwowski ◽  
Amr Sabry

The Pi family of reversible programming languages for boolean circuits is presented as a syntax of combinators witnessing type isomorphisms of algebraic data types. In this paper, we give a denotational semantics for this language, using weak groupoids à la Homotopy Type Theory, and show how to derive an equational theory for it, presented by 2-combinators witnessing equivalences of type isomorphisms. We establish a correspondence between the syntactic groupoid of the language and a formally presented univalent subuniverse of finite types. The correspondence relates 1-combinators to 1-paths, and 2-combinators to 2-paths in the universe, which is shown to be sound and complete for both levels, forming an equivalence of groupoids. We use this to establish a Curry-Howard-Lambek correspondence between Reversible Logic, Reversible Programming Languages, and Symmetric Rig Groupoids, by showing that the syntax of Pi is presented by the free symmetric rig groupoid, given by finite sets and bijections. Using the formalisation of our results, we perform normalisation-by-evaluation, verification and synthesis of reversible logic gates, motivated by examples from quantum computing. We also show how to reason about and transfer theorems between different representations of reversible circuits.


2021 ◽  
Author(s):  
Bappaditya Dey ◽  
Kasem Khalil ◽  
Ashok Kumar ◽  
Magdy Bayoumi
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikhlesh Kumar Mishra ◽  
Upendra Chaurasiya ◽  
Saumya Srivastava ◽  
Shubham Shukla ◽  
Kamal K. Upadhyay

Abstract Reversible gate has been one of the emerging research areas that ensure continual process of innovation trends that explore and utilizes the resources. Due to the increasing power consumption of electronic circuits, it has been observed that quantum computing is one of its latest applications. This technology can be utilized by reducing the energy consumption by preserving the bits of information that are still useful. A photon has zero rest mass, while an electron has a nonzero rest mass. These characteristics inspired the researchers to develop an all-optical Fredkin gate. The proposed gate design overcomes the shortcomings of conventional Fredkin gates and provides better performance.


Sign in / Sign up

Export Citation Format

Share Document