scholarly journals Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution

2016 ◽  
Vol 93 (1) ◽  
Author(s):  
Zhengyu Li ◽  
Yichen Zhang ◽  
Xiangyu Wang ◽  
Bingjie Xu ◽  
Xiang Peng ◽  
...  
2020 ◽  
Vol 59 (9) ◽  
pp. 2939-2950
Author(s):  
Wei Zhao ◽  
Xinchao Ruan ◽  
Yanyan Feng ◽  
Xiaoxue Wang ◽  
Ying Guo ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 578 ◽  
Author(s):  
Hai Zhong ◽  
Yijun Wang ◽  
Xudong Wang ◽  
Qin Liao ◽  
Xiaodong Wu ◽  
...  

The scheme of the self-referenced continuous-variable quantum key distribution (SR CV-QKD) has been experimentally demonstrated. However, because of the finite dynamics of Alice’s amplitude modulator, there will be an extra excess noise that is proportional to the amplitude of the reference pulse, while the maximal transmission distance of this scheme is positively correlated with the amplitude of the reference pulse. Therefore, there is a trade-off between the maximal transmission distance and the amplitude of the reference pulse. In this paper, we propose the scheme of SR CV-QKD with virtual photon subtraction, which not only has no need for the use of a high intensity reference pulse to improve the maximal transmission distance, but also has no demand of adding complex physical operations to the original self-referenced scheme. Compared to the original scheme, our simulation results show that a considerable extension of the maximal transmission distance can be obtained when using a weak reference pulse, especially for one-photon subtraction. We also find that our scheme is sensible with the detector’s electronic noise at reception. A longer maximal transmission distance can be achieved for lower electronic noise. Moreover, our scheme has a better toleration of excess noise compared to the original self-referenced scheme, which implies the advantage of using virtual photon subtraction to increase the maximal tolerable excess noise for distant users. These results suggest that our scheme can make the SR CV-QKD from the laboratory possible for practical metropolitan area application.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 760
Author(s):  
Qin Liao ◽  
Gang Xiao ◽  
Shaoliang Peng

Atmospheric continuous-variable quantum key distribution (ACVQKD) has been proven to be secure theoretically with the assumption that the signal source is well protected by the sender so that it cannot be compromised. However, this assumption is quite unpractical in realistic quantum communication system. In this work, we investigate a practical situation in which the signal source is no longer protected by the legitimate parts, but is exposed to the untrusted atmospheric channel. We show that the performance of ACVQKD is reduced by removing the assumption, especially when putting the untrusted source at the middle of the channel. To improve the performance of the ACVQKD with the untrusted source, a non-Gaussian operation, called photon subtraction, is subsequently introduced. Numerical analysis shows that the performance of ACVQKD with an untrusted source can be improved by properly adopting the photon subtraction operation. Moreover, a special situation where the untrusted source is located in the middle of the atmospheric channel is also considered. Under direct reconciliation, we find that its performance can be significantly improved when the photon subtraction operation is manipulated by the sender.


2010 ◽  
Vol 08 (05) ◽  
pp. 779-786
Author(s):  
SHENG ZHANG ◽  
JIAN WANG ◽  
CHAO-JING TANG ◽  
QUAN ZHANG

We present a new non-Gaussian quantum key distribution (QKD) protocol using squeezed states. Compared with a binary modulation, the efficiency can be improved when a four alphabetic letters modulation is chosen. We then analyze the security of the protocol under a collective entangling cloner attack, which is a powerful attack strategy in continuous variable QKD. We also show how the modulation coefficient affects the key rate, then the key rate can be maximized by choosing an optimal coefficient.


2007 ◽  
Vol 98 (3) ◽  
Author(s):  
Jérôme Lodewyck ◽  
Thierry Debuisschert ◽  
Raúl García-Patrón ◽  
Rosa Tualle-Brouri ◽  
Nicolas J. Cerf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document