scholarly journals Enhancing of Self-Referenced Continuous-Variable Quantum Key Distribution with Virtual Photon Subtraction

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 578 ◽  
Author(s):  
Hai Zhong ◽  
Yijun Wang ◽  
Xudong Wang ◽  
Qin Liao ◽  
Xiaodong Wu ◽  
...  

The scheme of the self-referenced continuous-variable quantum key distribution (SR CV-QKD) has been experimentally demonstrated. However, because of the finite dynamics of Alice’s amplitude modulator, there will be an extra excess noise that is proportional to the amplitude of the reference pulse, while the maximal transmission distance of this scheme is positively correlated with the amplitude of the reference pulse. Therefore, there is a trade-off between the maximal transmission distance and the amplitude of the reference pulse. In this paper, we propose the scheme of SR CV-QKD with virtual photon subtraction, which not only has no need for the use of a high intensity reference pulse to improve the maximal transmission distance, but also has no demand of adding complex physical operations to the original self-referenced scheme. Compared to the original scheme, our simulation results show that a considerable extension of the maximal transmission distance can be obtained when using a weak reference pulse, especially for one-photon subtraction. We also find that our scheme is sensible with the detector’s electronic noise at reception. A longer maximal transmission distance can be achieved for lower electronic noise. Moreover, our scheme has a better toleration of excess noise compared to the original self-referenced scheme, which implies the advantage of using virtual photon subtraction to increase the maximal tolerable excess noise for distant users. These results suggest that our scheme can make the SR CV-QKD from the laboratory possible for practical metropolitan area application.

2016 ◽  
Vol 93 (1) ◽  
Author(s):  
Zhengyu Li ◽  
Yichen Zhang ◽  
Xiangyu Wang ◽  
Bingjie Xu ◽  
Xiang Peng ◽  
...  

2012 ◽  
Vol 10 (05) ◽  
pp. 1250059 ◽  
Author(s):  
MAOZHU SUN ◽  
XIANG PENG ◽  
YUJIE SHEN ◽  
HONG GUO

The original two-way continuous-variable quantum-key-distribution (CV-QKD) protocols [S. Pirandola, S. Mancini, S. Lloyd and S. L. Braunstein, Nat. Phys. 4 (2008) 726] give the security against the collective attack on the condition of the tomography of the quantum channels. We propose a family of new two-way CV-QKD protocols and prove their security against collective entangling cloner attacks without the tomography of the quantum channels. The simulation result indicates that the new protocols maintain the same advantage as the original two-way protocols whose tolerable excess noise surpasses that of the one-way CV-QKD protocol. We also show that all sub-protocols within the family have higher secret key rate and much longer transmission distance than the one-way CV-QKD protocol for the noisy channel.


2016 ◽  
Vol 16 (13&14) ◽  
pp. 1081-1095
Author(s):  
Tobias Gehring ◽  
Christian S. Jacobsen ◽  
Ulrik L. Andersen

Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two independent modulators for their implementations. Here, we propose and experimentally test a largely simplified scheme in which the Gaussian modulation is performed in a single quadrature. The scheme is shown to be asymptotically secure against collective attacks, and considers a specific attack using asymmetric preparation and excess noise. We find that this protocol is considerably more sensitive to noise than other CVQKD schemes, as a consequence of the simplified implementation. A single-quadrature modulation approach renders the need for a costly amplitude modulator unnecessary, and thus facilitates commercialization of continuous-variable quantum key distribution, provided that the low noise requirement can be achieved.


2013 ◽  
Vol 11 (04) ◽  
pp. 1350037 ◽  
Author(s):  
JIAN FANG ◽  
YUAN LU ◽  
PENG HUANG ◽  
GUANGQIANG HE ◽  
GUIHUA ZENG

In this paper, we first study a generalized protocol of discrete modulation for continuous-variable quantum key distribution with N coherent states in a Gaussian lossy and noisy channel and investigate its performance against collective attacks. We find that discrete modulation protocols with more than eight states do not perform better than the eight-state protocol. Then, we study the improvement of this protocol by using a nondeterministic noiseless linear amplifier (NLA) on Bob's detection stage. Results indicate that a NLA with gain g can extend the maximum transmission distance by 50 log 10g2 km and can increase the maximal tolerable excess noise. With the reconciliation efficiency β, we find the gain of NLA has a maximal value defined as g max and by adjusting the gain to about βg max one can have the best improvement on secret key rate.


2020 ◽  
Vol 59 (9) ◽  
pp. 2939-2950
Author(s):  
Wei Zhao ◽  
Xinchao Ruan ◽  
Yanyan Feng ◽  
Xiaoxue Wang ◽  
Ying Guo ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1011 ◽  
Author(s):  
Qingquan Peng ◽  
Guojun Chen ◽  
Xuan Li ◽  
Qin Liao ◽  
Ying Guo

Considering the ocean water’s optical attenuation is significantly larger than that of Fiber Channel, we propose an approach to enhance the security of underwater continuous-variable quantum key distribution (CVQKD). In particular, the photon subtraction operation is performed at the emitter to enhance quantum entanglement, thereby improving the underwater transmission performance of the CVQKD. Simulation results show that the photon subtraction operation can effectively improve the performance of CVQKD in terms of underwater transmission distance. We also compare the performance of the proposed protocol in different water qualities, which shows the advantage of our protocol against water deterioration. Therefore, we provide a suitable scheme for establishing secure communication between submarine and submarine vehicles.


2017 ◽  
Vol 31 (16) ◽  
pp. 1750143 ◽  
Author(s):  
Xiaoqun Wang ◽  
Chunhui Huang

The performance of one-way and two-way continuous variable quantum key distribution (CVQKD) protocols can be increased by adding some noise on the reconciliation side. In this paper, we propose to add noise at the reconciliation end to improve the performance of CVQKD with untrusted source. We derive the key rate of this case and analyze the impact of the additive noise. The simulation results show that the optimal additive noise can improve the performance of the system in terms of maximum transmission distance and tolerable excess noise.


2012 ◽  
Vol 10 (01) ◽  
pp. 1250004 ◽  
Author(s):  
A. BECIR ◽  
F. A. A. EL-ORANY ◽  
M. R. B. WAHIDDIN

We propose a continuous variable quantum key distribution protocol based on discrete modulation of eight-state coherent states. We present a rigorous security proof against the collective attacks by taking into consideration the realistic lossy and noisy quantum channel, the imperfect detector efficiency, and the detector electronic noise. This protocol shows high tolerance against excess noise and promises to achieve over 100 km distance of optical fiber.


Sign in / Sign up

Export Citation Format

Share Document