scholarly journals Plasmons and screening in finite-bandwidth two-dimensional electron gas

2020 ◽  
Vol 102 (12) ◽  
Author(s):  
Kaveh Khaliji ◽  
Tobias Stauber ◽  
Tony Low
Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Giulia Venditti ◽  
Marco Grilli ◽  
Sergio Caprara

LaAlO3/SrTiO3 interfaces are a nice example of a two-dimensional electron gas, whose carrier density can be varied by top- and back-gating techniques. Due to the electron confinement near the interface, the two-dimensional band structure is split into sub-bands, and more than one sub-band can be filled when the carrier density increases. These interfaces also host superconductivity, and the interplay of two-dimensionality, multi-band character, with the possible occurrence of multi-gap superconductivity and disorder calls for a better understanding of finite-bandwidth effects on the superconducting critical temperature of heavily disordered multi-gap superconductors.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Jine Zhang ◽  
Hui Zhang ◽  
Xiaobing Chen ◽  
Jing Zhang ◽  
Shaojin Qi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Orion Ciftja

AbstractWe consider the stability of the circular Fermi surface of a two-dimensional electron gas system against an elliptical deformation induced by an anisotropic Coulomb interaction potential. We use the jellium approximation for the neutralizing background and treat the electrons as fully spin-polarized (spinless) particles with a constant isotropic (effective) mass. The anisotropic Coulomb interaction potential considered in this work is inspired from studies of two-dimensional electron gas systems in the quantum Hall regime. We use a Hartree–Fock procedure to obtain analytical results for two special Fermi liquid quantum electronic phases. The first one corresponds to a system with circular Fermi surface while the second one corresponds to a liquid anisotropic phase with a specific elliptical deformation of the Fermi surface that gives rise to the lowest possible potential energy of the system. The results obtained suggest that, for the most general situations, neither of these two Fermi liquid phases represent the lowest energy state of the system within the framework of the family of states considered in this work. The lowest energy phase is one with an optimal elliptical deformation whose specific value is determined by a complex interplay of many factors including the density of the system.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Berthold Jäck ◽  
Fabian Zinser ◽  
Elio J. König ◽  
Sune N. P. Wissing ◽  
Anke B. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document