New ground states in unconventional superconductors: Broken translational and time-reversal symmetry

1992 ◽  
Vol 45 (21) ◽  
pp. 12620-12623 ◽  
Author(s):  
Mario Palumbo ◽  
Paul Muzikar

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Paul Eugenio ◽  
Ceren Dag

Strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers (Chern=\pm1=±1), and with flat dispersion, are studied by using lowest Landau level (LLL) wavefunctions. More precisely, we determine the ground states for two scenarios at half-filling: (i) LLL’s with opposite sign of magnetic field, and therefore opposite Chern number; and (ii) LLL’s with the same magnetic field. In the first scenario – which we argue to be a toy model inspired by the chirally symmetric continuum model for twisted bilayer graphene – the opposite Chern LLL’s are Kramer pairs, and thus there exists time-reversal symmetry (\mathbb{Z}_2ℤ2). Turning on repulsive interactions drives the system to spontaneously break time-reversal symmetry – a quantum anomalous Hall state described by one particle per LLL orbital, either all positive Chern |{++\cdots+}\rangle|++⋯+⟩ or all negative |{--\cdots-}\rangle|−−⋯−⟩. If instead, interactions are taken between electrons of like-Chern number, the ground state is an SU(2)SU(2) ferromagnet, with total spin pointing along an arbitrary direction, as with the \nu=1ν=1 spin-\frac{1}{2}12 quantum Hall ferromagnet. The ground states and some of their excitations for both of these scenarios are argued analytically, and further complimented by density matrix renormalization group (DMRG) and exact diagonalization.



2009 ◽  
Vol 404 (3-4) ◽  
pp. 507-509 ◽  
Author(s):  
Aharon Kapitulnik ◽  
Jing Xia ◽  
Elizabeth Schemm


2009 ◽  
Vol 11 (5) ◽  
pp. 055060 ◽  
Author(s):  
Aharon Kapitulnik ◽  
Jing Xia ◽  
Elizabeth Schemm ◽  
Alexander Palevski








2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Tian Shang ◽  
Christopher Baines ◽  
Lieh-Jeng Chang ◽  
Dariusz Jakub Gawryluk ◽  
Ekaterina Pomjakushina ◽  
...  

Abstract Non-centrosymmetric superconductors (NCSCs) are promising candidates in the search for unconventional and topological superconductivity. The α-Mn-type rhenium-based alloys represent excellent examples of NCSCs, where spontaneous magnetic fields, peculiar to time-reversal symmetry (TRS) breaking, have been shown to develop in the superconducting phase. By converse, TRS is preserved in many other isostructural NCSCs, thus leaving the key question about its origin fully open. Here, we consider the superconducting Re1−xMox (0 ≤ x ≤ 1) family, which comprises both centro- and non-centrosymmetric structures and includes also two extra superconducting phases, β-CrFe and bcc-W. Muon-spin relaxation and rotation (μSR) measurements show a gradual increase of the relaxation rate below Tc, yet its independence of the crystal structure, suggesting that rhenium presence and its amount are among the key factors for the appearance and the extent of TRS breaking in the α-Mn-type NCSCs. The reported results propose Re1−xMox as an ideal test case for investigating TRS breaking in unconventional superconductors.





2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jackson R. Badger ◽  
Yundi Quan ◽  
Matthew C. Staab ◽  
Shuntaro Sumita ◽  
Antonio Rossi ◽  
...  

AbstractUnconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors.



Sign in / Sign up

Export Citation Format

Share Document