unconventional superconductors
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 44)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jackson R. Badger ◽  
Yundi Quan ◽  
Matthew C. Staab ◽  
Shuntaro Sumita ◽  
Antonio Rossi ◽  
...  

AbstractUnconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Kreisel ◽  
C. A. Marques ◽  
L. C. Rhodes ◽  
X. Kong ◽  
T. Berlijn ◽  
...  

AbstractThe single-layered ruthenate Sr2RuO4 is one of the most enigmatic unconventional superconductors. While for many years it was thought to be the best candidate for a chiral p-wave superconducting ground state, desirable for topological quantum computations, recent experiments suggest a singlet state, ruling out the original p-wave scenario. The superconductivity as well as the properties of the multi-layered compounds of the ruthenate perovskites are strongly influenced by a van Hove singularity in proximity of the Fermi energy. Tiny structural distortions move the van Hove singularity across the Fermi energy with dramatic consequences for the physical properties. Here, we determine the electronic structure of the van Hove singularity in the surface layer of Sr2RuO4 by quasi-particle interference imaging. We trace its dispersion and demonstrate from a model calculation accounting for the full vacuum overlap of the wave functions that its detection is facilitated through the octahedral rotations in the surface layer.


2021 ◽  
Vol 104 (14) ◽  
Author(s):  
Miguel Antonio Sulangi ◽  
W. A. Atkinson ◽  
P. J. Hirschfeld

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
P. Wiecki ◽  
M. Frachet ◽  
A.-A. Haghighirad ◽  
T. Wolf ◽  
C. Meingast ◽  
...  

AbstractElectronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no indication of a nematic-ordered state in the AFe2As2 (A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1435
Author(s):  
Victor G. Yarzhemsky

Sr2RuO4 and Fe-pnictide superconductors belong to the same point group symmetry D4h. Many experimental data confirm odd pairs in Sr2RuO4 and even pairs in Fe-pnictides, but opposite conclusions also exist. Recent NMR results of Pustogow et al., which revealed even Cooper pairs in Sr2RuO4, require reconsideration of symmetry treatment of its SOP (superconducting order parameter). In the present work making use of the Mackey–Bradley theorem on symmetrized squares, a group theoretical investigation of possible pairing states in D4h symmetry is performed. It is obtained for I4/mmm , i.e., space group of Sr2RuO4, that triplet pairs with even spatial parts are possible in kz direction and in points M and Y. For the two latter cases pairing of equivalent electrons with nonzero total momentum is proposed. In P4/nmm space group of Fe- pnictides in point M, even and odd pairs are possible for singlet and triplet cases. It it shown that even and odd chiral states with angular momentum projection m=±1 have nodes in vertical planes, but Eg is nodal , whereas Eu is nodeless in the basal plane. It is also shown that the widely accepted assertion that the parity of angular momentum value is directly connected with the spatial parity of a pair is not valid in a space-group approach to the wavefunction of a Cooper pair.


2021 ◽  
Vol 891 ◽  
pp. 89-98
Author(s):  
Cheng Yu Ye ◽  
Zhao Ye Wang

Since the discovery of superconductors, research has shifted from simple metals to alloys and further to complex compounds. As the record of critical temperature gradually increases, more opportunities and challenges have emerged. The Bardeen-Cooper-Schrieffer theory failed to explain certain observations of unconventional superconductors. However, breakthroughs have been made on the new understanding of unconventional superconductors. This article will introduce various challenges to and opportunities for the application of unconventional superconductors, including the high-temperature superconducting fault-current limiter and the superconducting energy-storage system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungyu Park ◽  
So Young Kim ◽  
Hyoung Kug Kim ◽  
Min Jeong Kim ◽  
Taeho Kim ◽  
...  

AbstractSuperconductivity in the vicinity of a competing electronic order often manifests itself with a superconducting dome, centered at a presumed quantum critical point in the phase diagram. This common feature, found in many unconventional superconductors, has supported a prevalent scenario in which fluctuations or partial melting of a parent order are essential for inducing or enhancing superconductivity. Here we present a contrary example, found in IrTe2 nanoflakes of which the superconducting dome is identified well inside the parent stripe charge ordering phase in the thickness-dependent phase diagram. The coexisting stripe charge order in IrTe2 nanoflakes significantly increases the out-of-plane coherence length and the coupling strength of superconductivity, in contrast to the doped bulk IrTe2. These findings clarify that the inherent instabilities of the parent stripe phase are sufficient to induce superconductivity in IrTe2 without its complete or partial melting. Our study highlights the thickness control as an effective means to unveil intrinsic phase diagrams of correlated van der Waals materials.


Sign in / Sign up

Export Citation Format

Share Document