SciPost Physics Core
Latest Publications


TOTAL DOCUMENTS

55
(FIVE YEARS 55)

H-INDEX

2
(FIVE YEARS 2)

Published By Stichting Scipost

2666-9366

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Tatsuhiko Ikeda ◽  
Koki Chinzei ◽  
Masahiro Sato

Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering. We develop a general theory for high-frequency drives with Lindblad-type dissipation to characterize and analyze NESSs. This theory is based on the high-frequency (HF) expansion with linear algebraic numerics and without numerically solving the time evolution. Using this theory, we show that NESSs can deviate from the Floquet-Gibbs state depending on the dissipation type. We also show the validity and usefulness of the HF-expansion approach in concrete models for a diamond nitrogen-vacancy (NV) center, a kicked open XY spin chain with topological phase transition under boundary dissipation, and the Heisenberg spin chain in a circularly-polarized magnetic field under bulk dissipation. In particular, for the isotropic Heisenberg chain, we propose the dissipation-assisted terahertz (THz) inverse Faraday effect in quantum magnets. Our theoretical framework applies to various time-periodic Lindblad equations that are currently under active research.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Panagiotis Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Quantum gravity is expected to gauge all global symmetries of effective theories, in the ultraviolet. Inspired by this expectation, we explore the consequences of gauging CPT as a quantum boundary condition in phase space. We find that it provides for a natural semiclassical regularisation and discretisation of the continuous spectrum of a quantum Hamiltonian related to the Dilation operator. We observe that the said spectrum is in correspondence with the zeros of the Riemann zeta and Dirichlet beta functions. Following ideas of Berry and Keating, this may help the pursuit of the Riemann hypothesis. It strengthens the proposal that this quantum Hamiltonian captures the near horizon dynamics of the scattering matrix of the Schwarzschild black hole, given the rich chaotic spectrum upon discretisation. It also explains why the spectrum appears to be erratic despite the unitarity of the scattering matrix.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Ajinkya Borle ◽  
Vincent Elfving ◽  
Samuel J. Lomonaco

The quantum approximate optimization algorithm (QAOA) by Farhi et al. is a quantum computational framework for solving quantum or classical optimization tasks. Here, we explore using QAOA for binary linear least squares (BLLS); a problem that can serve as a building block of several other hard problems in linear algebra, such as the non-negative binary matrix factorization (NBMF) and other variants of the non-negative matrix factorization (NMF) problem. Most of the previous efforts in quantum computing for solving these problems were done using the quantum annealing paradigm. For the scope of this work, our experiments were done on noiseless quantum simulators, a simulator including a device-realistic noise-model, and two IBM Q 5-qubit machines. We highlight the possibilities of using QAOA and QAOA-like variational algorithms for solving such problems, where trial solutions can be obtained directly as samples, rather than being amplitude-encoded in the quantum wavefunction. Our numerics show that even for a small number of steps, simulated annealing can outperform QAOA for BLLS at a QAOA depth of p\leq3p≤3 for the probability of sampling the ground state. Finally, we point out some of the challenges involved in current-day experimental implementations of this technique on cloud-based quantum computers.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Mathieu Beau ◽  
Adolfo del Campo

We find the complete family of many-body quantum Hamiltonians with ground-state of Jastrow form involving the pairwise product of a pair function in an arbitrary spatial dimension. The parent Hamiltonian generally includes a two-body pairwise potential as well as a three-body potential. We thus generalize the Calogero-Marchioro construction for the three-dimensional case to an arbitrary spatial dimension. The resulting family of models is further extended to include a one-body term representing an external potential, which gives rise to an additional long-range two-body interaction. Using this framework, we provide the generalization to an arbitrary spatial dimension of well-known systems such as the Calogero-Sutherland and Calogero-Moser models. We also introduce novel models, generalizing the McGuire many-body quantum bright soliton solution to higher dimensions and considering ground-states which involve e.g., polynomial, Gaussian, exponential, and hyperbolic pair functions. Finally, we show how the pair function can be reverse-engineered to construct models with a given potential, such as a pair-wise Yukawa potential, and to identify models governed exclusively by three-body interactions.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Vincent Rivasseau ◽  
Fabien Vignes-Tourneret

We continue the constructive program about tensor field theory through the next natural model, namely the rank five tensor theory with quartic melonic interactions and propagator inverse of the Laplacian on \mathbf{U(1)^5}𝐔(1)5. We make a first step towards its construction by establishing its power counting, identifying the divergent graphs and performing a careful study of (a slight modification of) its RG flow. Thus we give strong evidence that this just renormalizable tensor field theory is non perturbatively asymptotically free.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Edoardo Carnio ◽  
Andreas Buchleitner ◽  
Frank Schlawin

We investigate how entanglement can enhance two-photon absorption in a three-level system. First, we employ the Schmidt decomposition to determine the entanglement properties of the optimal two-photon state to drive such a transition, and the maximum enhancement which can be achieved in comparison to the optimal classical pulse. We then adapt the optimization problem to realistic experimental constraints, where photon pairs from a down-conversion source are manipulated by local operations such as spatial light modulators. We derive optimal pulse shaping functions to enhance the absorption efficiency, and compare the maximal enhancement achievable by entanglement to the yield of optimally shaped, separable pulses.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Jurriaan Wouters ◽  
Hosho Katsura ◽  
Dirk Schuricht

We apply Witten’s conjugation argument [Nucl. Phys. B 202, 253 (1982)] to spin chains, where it allows us to derive frustration-free systems and their exact ground states from known results. We particularly focus on \mathbb{Z}_pℤp-symmetric models, with the Kitaev and Peschel–Emery line of the axial next-nearest neighbour Ising (ANNNI) chain being the simplest examples. The approach allows us to treat two \mathbb{Z}_3ℤ3-invariant frustration-free parafermion chains, recently derived by Iemini et al. [Phys. Rev. Lett. 118, 170402 (2017)] and Mahyaeh and Ardonne [Phys. Rev. B 98, 245104 (2018)], respectively, in a unified framework. We derive several other frustration-free models and their exact ground states, including \mathbb{Z}_4ℤ4- and \mathbb{Z}_6ℤ6-symmetric generalisations of the frustration-free ANNNI chain.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Parth Bhargava ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Anurag Mishara ◽  
Sachin Panneer Selvam ◽  
...  

Circuit Complexity, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe from the paradigm of two well known bouncing cosmological solutions viz. Cosine hyperbolic and Exponential models of scale factors. Besides circuit complexity, we use the Out-of-Time Ordered correlation (OTOC) functions for probing the random behaviour of the universe both at early and the late times. In particular, we use the techniques of well known two-mode squeezed state formalism in cosmological perturbation theory as a key ingredient for the purpose of our computation. To give an appropriate theoretical interpretation that is consistent with the observational perspective we use the scale factor and the number of e-foldings as a dynamical variable instead of conformal time for this computation. From this study, we found that the period of post bounce is the most interesting one. Though it may not be immediately visible but an exponential rise can be seen in the complexity once the post bounce feature is extrapolated to the present time scales. We also find within the very small acceptable error range a universal connecting relation between Complexity computed from two different kinds of cost functionals-linearly weighted and geodesic weighted with the OTOC. Furthermore, from the complexity computation obtained from both the cosmological models under consideration and also using the well known Maldacena (M) Shenker (S) Stanford (S) bound on quantum Lyapunov exponent, \lambda\leq 2\pi/\betaλ≤2π/β for the saturation of chaos, we estimate the lower bound on the equilibrium temperature of our universe at the late time scale. Finally, we provide a rough estimation of the scrambling time scale in terms of the conformal time.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Lucas Hackl ◽  
Eugenio Bianchi

We show that bosonic and fermionic Gaussian states (also known as ``squeezed coherent states’’) can be uniquely characterized by their linear complex structure JJ which is a linear map on the classical phase space. This extends conventional Gaussian methods based on covariance matrices and provides a unified framework to treat bosons and fermions simultaneously. Pure Gaussian states can be identified with the triple (G,\Omega,J)(G,Ω,J) of compatible Kähler structures, consisting of a positive definite metric GG, a symplectic form \OmegaΩ and a linear complex structure JJ with J^2=-\mathbb{1}J2=−1. Mixed Gaussian states can also be identified with such a triple, but with J^2\neq -\mathbb{1}J2≠−1. We apply these methods to show how computations involving Gaussian states can be reduced to algebraic operations of these objects, leading to many known and some unknown identities. We apply these methods to the study of (A) entanglement and complexity, (B) dynamics of stable systems, (C) dynamics of driven systems. From this, we compile a comprehensive list of mathematical structures and formulas to compare bosonic and fermionic Gaussian states side-by-side.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Jeong Ryeol Choi

We investigate entanglement dynamics for a nanomechanical resonator coupled to an optical cavity field through the analysis of the associated entanglement entropies. The effects of time variation of several parameters, such as the optical frequency and the coupling strength, on the evolution of entanglement entropies are analyzed. We consider three kinds of entanglement entropies as the measures of the entanglement of subsystems, which are the linear entropy, the von Neumann entropy, and the Rényi entropy. The analytic formulae of these entropies are derived in a rigorous way using wave functions of the system. In particular, we focus on time behaviors of entanglement entropies in the case where the optical frequency is modulated by a small oscillating factor. We show that the entanglement entropies emerge and increase as the coupling strength grows from zero. The entanglement entropies fluctuate depending on the adiabatic variation of the parameters and such fluctuations are significant especially in the strong coupling regime. Our research may deepen the understanding of the optomechanical entanglement, which is crucial in realizing hybrid quantum-information protocols in quantum computation, quantum networks, and other domains in quantum science.


Sign in / Sign up

Export Citation Format

Share Document