Interaction between neutral sodium clusters: Short-range behavior

1994 ◽  
Vol 50 (19) ◽  
pp. 14674-14677 ◽  
Author(s):  
U. R. Schmitt ◽  
E. Engel ◽  
R. M. Dreizler
1989 ◽  
Vol 13 (2) ◽  
pp. 171-178 ◽  
Author(s):  
U. R�thlisberger ◽  
M. Sch�r ◽  
E. Schumacher

2020 ◽  
Vol 4 ◽  
pp. 75
Author(s):  
B. A. Kotsos ◽  
M. E. Grypeos

The effective radial electronic potentials for neutral sodium clus­ters determined by the local density approximation and the jellium model are parametrized by means οf (symmetrized) Woods-Saxon and "Wine-Bottle" symmetrized Woods-Saxon potentials. The potential parameters are deter­ mined by various least-squares fitting procedures. Particular attention is paid to the dependence of the radius parameter R on the particle number Ν and it is realized that for relatively smaller values of N, complex expressions of R as a function of N, are more appropriate than the standard one R = r_0N^{1/3}. It is also found that improved results in these cases are obtained with an expression, of the form R = r_0N^{1/3} + 6, which is still very simple.


2020 ◽  
Vol 5 ◽  
pp. 57
Author(s):  
B. A. Kotsos ◽  
M. E. Grypeos

The effective radial electronic potentials for neutral sodium clusters, which were determined by Ekardt on the basis of the local density approximation and the jellium model, are parametrized by means of the (symmetrized) Woods-Saxon and "Wine-Bottle" symmetrized Woods-Saxon potentials with the aim of investigating the dependence of size and energy quantities on the cluster particle number. The potential parameters are determined by vari­ous least-squares fitting procedures. It is found that for the radius R of the above potentials, complex expressions are more appropriate than the stan­dard one R = r0N^{1/3} for relatively small values of N. Furthermore, N-power expansions are derived for those complex expressions of R, as well as for the r.m.s. radius of the potential. It is also found that improved results in these cases are obtained with an expression of the form R = r0N^{1/3}+b, which is still very simple. There is also investigated the variation of energy quan­tities, such as the single particle energies of the 1s and 1p states, the level spacing |E1p-E1s| and the average energy level spacing, with respect to the particle number N. Expressions for the first three of these quantities with N-dependent terms of the form aN^{2/3} + βΝ^{-1} give good results.


1994 ◽  
Vol 100 (4) ◽  
pp. 2765-2776 ◽  
Author(s):  
L. Bewig ◽  
U. Buck ◽  
Ch. Mehlmann ◽  
M. Winter

Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Author(s):  
E.A. Kenik ◽  
T.A. Zagula ◽  
M.K. Miller ◽  
J. Bentley

The state of long-range order (LRO) and short-range order (SRO) in Ni4Mo has been a topic of interest for a considerable time (see Brooks et al.). The SRO is often referred to as 1½0 order from the apparent position of the diffuse maxima in diffraction patterns, which differs from the positions of the LRO (D1a) structure. Various studies have shown that a fully disordered state cannot be retained by quenching, as the atomic arrangements responsible for the 1½0 maxima are present at temperatures above the critical ordering temperature for LRO. Over 20 studies have attempted to identify the atomic arrangements associated with this state of order. A variety of models have been proposed, but no consensus has been reached. It has also been shown that 1 MeV electron irradiation at low temperatures (∼100 K) can produce the disordered phase in Ni4Mo. Transmission electron microscopy (TEM), atom probe field ion microscopy (APFIM), and electron irradiation disordering have been applied in the current study to further the understanding of the ordering processes in Ni4Mo.


1969 ◽  
Vol 14 (8) ◽  
pp. 437-438
Author(s):  
CELIA STENDLER LAVATELLI

1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-175-Pr2-178 ◽  
Author(s):  
G. T. Pérez ◽  
F. H. Salas ◽  
R. Morales ◽  
L. M. Álvarez-Prado ◽  
J. M. Alameda

Sign in / Sign up

Export Citation Format

Share Document