scholarly journals Formation of stacking-fault tetrahedra in aluminum irradiated with high-energy particles at low-temperatures

2004 ◽  
Vol 69 (9) ◽  
Author(s):  
Y. Satoh ◽  
T. Yoshiie ◽  
H. Mori ◽  
M. Kiritani
2002 ◽  
Vol 124 (3) ◽  
pp. 329-334 ◽  
Author(s):  
B. D. Wirth ◽  
V. V. Bulatov ◽  
T. Diaz de la Rubia

In copper and other face centered cubic metals, high-energy particle irradiation produces hardening and shear localization. Post-irradiation microstructural examination in Cu reveals that irradiation has produced a high number density of nanometer sized stacking fault tetrahedra. The resultant irradiation hardening and shear localization is commonly attributed to the interaction between stacking fault tetrahedra and mobile dislocations, although the mechanism of this interaction is unknown. In this work, we present results from a molecular dynamics simulation study to characterize the motion and velocity of edge dislocations at high strain rate and the interaction and fate of the moving edge dislocation with stacking fault tetrahedra in Cu using an EAM interatomic potential. The results show that a perfect SFT acts as a hard obstacle for dislocation motion and, although the SFT is sheared by the dislocation passage, it remains largely intact. However, our simulations show that an overlapping, truncated SFT is absorbed by the passage of an edge dislocation, resulting in dislocation climb and the formation of a pair of less mobile super-jogs on the dislocation.


Author(s):  
L. J. Sykes ◽  
J. J. Hren

In electron microscope studies of crystalline solids there is a broad class of very small objects which are imaged primarily by strain contrast. Typical examples include: dislocation loops, precipitates, stacking fault tetrahedra and voids. Such objects are very difficult to identify and measure because of the sensitivity of their image to a host of variables and a similarity in their images. A number of attempts have been made to publish contrast rules to help the microscopist sort out certain subclasses of such defects. For example, Ashby and Brown (1963) described semi-quantitative rules to understand small precipitates. Eyre et al. (1979) published a catalog of images for BCC dislocation loops. Katerbau (1976) described an analytical expression to help understand contrast from small defects. There are other publications as well.


Author(s):  
Honoka TODA ◽  
Wataru MIYAKE ◽  
Takefumi MITANI ◽  
Takeshi TAKASHIMA ◽  
Yoshizumi MIYOSHI ◽  
...  

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


1998 ◽  
Vol 57 (19) ◽  
pp. 12564-12572 ◽  
Author(s):  
Che-Chen Chang ◽  
Jiin-Yun Hsieh

Sign in / Sign up

Export Citation Format

Share Document