scholarly journals Three-dimensional topological insulators in the octahedron-decorated cubic lattice

2011 ◽  
Vol 84 (7) ◽  
Author(s):  
Jing-Min Hou ◽  
Wen-Xin Zhang ◽  
Guo-Xiang Wang
2021 ◽  
Vol 22 (11) ◽  
pp. 5914
Author(s):  
Mengsheng Zha ◽  
Nan Wang ◽  
Chaoyang Zhang ◽  
Zheng Wang

Reconstructing three-dimensional (3D) chromosomal structures based on single-cell Hi-C data is a challenging scientific problem due to the extreme sparseness of the single-cell Hi-C data. In this research, we used the Lennard-Jones potential to reconstruct both 500 kb and high-resolution 50 kb chromosomal structures based on single-cell Hi-C data. A chromosome was represented by a string of 500 kb or 50 kb DNA beads and put into a 3D cubic lattice for simulations. A 2D Gaussian function was used to impute the sparse single-cell Hi-C contact matrices. We designed a novel loss function based on the Lennard-Jones potential, in which the ε value, i.e., the well depth, was used to indicate how stable the binding of every pair of beads is. For the bead pairs that have single-cell Hi-C contacts and their neighboring bead pairs, the loss function assigns them stronger binding stability. The Metropolis–Hastings algorithm was used to try different locations for the DNA beads, and simulated annealing was used to optimize the loss function. We proved the correctness and validness of the reconstructed 3D structures by evaluating the models according to multiple criteria and comparing the models with 3D-FISH data.


2017 ◽  
Vol 50 (3) ◽  
pp. 830-839 ◽  
Author(s):  
S. M. Suturin ◽  
V. V. Fedorov ◽  
A. M. Korovin ◽  
N. S. Sokolov ◽  
A. V. Nashchekin ◽  
...  

The development of growth techniques aimed at the fabrication of nanoscale heterostructures with layers of ferroic 3dmetals on semiconductor substrates is very important for their potential usage in magnetic media recording applications. A structural study is presented of single-crystal nickel island ensembles grown epitaxially on top of CaF2/Si insulator-on-semiconductor heteroepitaxial substrates with (111), (110) and (001) fluorite surface orientations. The CaF2buffer layer in the studied multilayer system prevents the formation of nickel silicide, guides the nucleation of nickel islands and serves as an insulating layer in a potential tunneling spin injection device. The present study, employing both direct-space and reciprocal-space techniques, is a continuation of earlier research on ferromagnetic 3dtransition metals grown epitaxially on non-magnetic and magnetically ordered fluorides. It is demonstrated that arrays of stand-alone faceted nickel islands with a face-centered cubic lattice can be grown controllably on CaF2surfaces of (111), (110) and (001) orientations. The proposed two-stage nickel growth technique employs deposition of a thin seeding layer at low temperature followed by formation of the islands at high temperature. The application of an advanced three-dimensional mapping technique exploiting reflection high-energy electron diffraction (RHEED) has proved that the nickel islands tend to inherit the lattice orientation of the underlying fluorite layer, though they exhibit a certain amount of {111} twinning. As shown by scanning electron microscopy, grazing-incidence X-ray diffraction (GIXD) and grazing-incidence small-angle X-ray scattering (GISAXS), the islands are of similar shape, being faceted with {111} and {100} planes. The results obtained are compared with those from earlier studies of Co/CaF2epitaxial nanoparticles, with special attention paid to the peculiarities related to the differences in lattice structure of the deposited metals: the dual-phase hexagonal close-packed/face-centered cubic lattice structure of cobalt as opposed to the single-phase face-centered cubic lattice structure of nickel.


2020 ◽  
Vol 101 (1) ◽  
Author(s):  
I. Lončarević ◽  
Lj. Budinski-Petković ◽  
J. R. Šćepanović ◽  
Z. M. Jakšić ◽  
S. B. Vrhovac

ACS Nano ◽  
2019 ◽  
Vol 13 (9) ◽  
pp. 10810-10817 ◽  
Author(s):  
Ming Yang ◽  
Jun Wang ◽  
Yafei Zhao ◽  
Liang He ◽  
Chunhui Ji ◽  
...  

2018 ◽  
Vol 32 (32) ◽  
pp. 1850390
Author(s):  
Minos A. Neto ◽  
J. Roberto Viana ◽  
Octavio D. R. Salmon ◽  
E. Bublitz Filho ◽  
José Ricardo de Sousa

The critical frontier of the isotropic antiferromagnetic Heisenberg model in a magnetic field along the z-axis has been studied by mean-field and effective-field renormalization group calculations. These methods, abbreviated as MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic a specific Bravais lattice. The frontier line in the plane of temperature versus magnetic field was obtained for the simple cubic and the body-centered cubic lattices. Spin clusters with sizes N = 1, 2, 4 were used so as to implement MFRG-12, EFRG-12 and EFRG-24 numerical equations. For the simple cubic lattice, the MFRG frontier exhibits a notorious re-entrant behavior. This problem is improved by the EFRG technique. However, both methods agree at lower fields. For the body-centered cubic lattice, the MFRG method did not work. As in the cubic lattice, all the EFRG results agree at lower fields. Nevertheless, the EFRG-12 approach gave no solution for very low temperatures. Comparisons with other methods have been discussed.


Sign in / Sign up

Export Citation Format

Share Document