body centered cubic
Recently Published Documents





2022 ◽  
Vol 209 ◽  
pp. 114367
Rajeshwar R. Eleti ◽  
Nikita Stepanov ◽  
Nikita Yurchenko ◽  
Sergey Zherebtsov ◽  
Francesco Maresca

2022 ◽  
Vol 12 (1) ◽  
A. E. Gleason ◽  
D. R. Rittman ◽  
C. A. Bolme ◽  
E. Galtier ◽  
H. J. Lee ◽  

AbstractRecent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H2O at pressure–temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H2O—yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.

Gang Liu ◽  
Miao Wang ◽  
Jianjun Xu ◽  
Min Huang ◽  
Chen Wang ◽  

Abstract Previous studies have dealt with Cr and its alloy films that exhibit promising characteristics as surface modification layers for antiwear, anticorrosive, and decorative applications. However, the effect of Ti alloying on the structure and mechanical properties of Cr films has not been studied. This work aimed to the structure and mechanical properties of Cr-Ti alloy films in the Cr-rich side. To this end, pure Cr, Cr-6 at.% Ti, Cr-11 at.% Ti, Cr-16 at.% Ti, and Cr-21 at.% Ti alloy films were prepared by magnetron sputtering, and the structure and mechanical properties of the films were evaluated. The results indicated that all the films exhibited a Cr-based growth with body-centered cubic structure, and increasing the Ti content decreased the (110) orientation growth of Cr basis. Ti alloying increased the hardness of the films, while leaded to a monotonic decrease in the modulus of the films. The first-principles method was employed to demonstrate that the reduced modulus was determined by the Ti alloying degree, rather than the orientation evolution of the films. The analysis of H/E value suggested that the wear resistance of the films was improved by Ti alloying. The mechanical properties of present Cr-Ti alloy films, and other Cr-based alloy films or metallic glasses in publications were compared and discussed. We proposed that Ti alloying is a considerable way to explore advanced mechanical properties of Cr-based alloy films.

2022 ◽  
Vol 119 (2) ◽  
pp. e2113059119
Yang Sun ◽  
Feng Zhang ◽  
Mikhail I. Mendelev ◽  
Renata M. Wentzcovitch ◽  
Kai-Ming Ho

The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core.

2022 ◽  
pp. 163732
Song Tang ◽  
Tongzheng Xin ◽  
Ting Luo ◽  
Fan Ji ◽  
Chuanqiang Li ◽  

Tuncer Kaya

In this work, the values of critical coupling strengths of the Ising lattices which are changing their lattice structure (or non-self-dual) under decimation transformations, such as the honeycomb, the triangular and the body centered cubic Ising lattices, are obtained by a modified real space renormalization group approach (RSRG). This modification is necessary to obtain a proper relation between the coupling strengths of the original and the decimated lattices. Indeed, we have achieved to obtain a proper renormalized coupling strength relation for honeycomb and triangular lattices readily, since the decimation transformation of the honeycomb lattice produces the triangular lattice or vice versa. Here, the problem of having physically untractable interactions between degrees of freedom in the renormalized Hamiltonian, which leads eventually to inevitable approximations in the treatment, except for the 1D Ising chain, has been solved with a proper approximation. Especially for the 3D Ising lattices, the physically untractable interactions appearing in the renormalized Hamiltonian make the mathematical treatment too cumbersome. As a result, there is not enough research dealing with the 3D Ising lattices using RG theory. Our approximation is based on using the simple relation [Formula: see text], which is, of course, a very relevant first-order approximation, if [Formula: see text]. With the help of this approximation, decimation transformation process produces only pairwise interactions in the renormalized Hamiltonian instead of having four spins, six spins, or even eight spin interactions which appear naturally if all the terms are kept in the renormalized Hamiltonians of the Ising lattices in 2D and higher dimensions. Without this approximation, one cannot apply analytic RG treatment feasibly to even simple cubic lattice, let alone applying it to the body centered cubic lattice. Using this modified RG approach, the values of critical coupling strengths of the honeycomb, the triangular and the body centered cubic Ising lattices are obtained analytically as [Formula: see text], [Formula: see text] and [Formula: see text] respectively. Apparently, these estimations are really close to the results obtained from cumbersome exact treatments which are [Formula: see text], [Formula: see text] and [Formula: see text] for the honeycomb, the triangular and the body centered cubic lattices.

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 156
Hong He ◽  
Shangyi Ma ◽  
Shaoqing Wang

Heat treatment is a necessary means to obtain desired properties for most of the materials. Thus, the grain boundary (GB) phenomena observed in experiments actually reflect the GB behaviors at relatively high temperature to some extent. In this work, 405 different GBs were systematically constructed for body-centered cubic (BCC) metals and the grain boundary energies (GBEs) of these GBs were calculated with molecular dynamics for W at 2400 K and β-Ti at 1300 K and by means of molecular statics for Mo and W at 0 K. It was found that high temperature may result in the GB complexion transitions for some GBs, such as the Σ11{332}{332} of W. Moreover, the relationships between GBEs and sin(θ) can be described by the functions of the same type for different GB sets having the same misorientation axis, where θ is the angle between the misorientation axis and the GB plane. Generally, the GBs tend to have lower GBE when sin(θ) is equal to 0. However, the GB sets with the <110> misorientation axis have the lowest GBE when sin(θ) is close to 1. Another discovery is that the local hexagonal-close packed α phase is more likely to form at the GBs with the lattice misorientations of 38.9°/<110>, 50.5°/<110>, 59.0°/<110> and 60.0°/<111> for β-Ti at 1300 K.

Sign in / Sign up

Export Citation Format

Share Document