scholarly journals Giant triplet proximity effect inπ-biased Josephson junctions with spin-orbit coupling

2015 ◽  
Vol 92 (2) ◽  
Author(s):  
Sol H. Jacobsen ◽  
Jacob Linder
2017 ◽  
Vol 96 (13) ◽  
Author(s):  
Tatsuki Hashimoto ◽  
Alexander A. Golubov ◽  
Yukio Tanaka ◽  
Jacob Linder

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Bálint Fülöp ◽  
Albin Márffy ◽  
Simon Zihlmann ◽  
Martin Gmitra ◽  
Endre Tóvári ◽  
...  

AbstractVan der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin–orbit coupling (SOC) allows to engineer a sizeable SOC in graphene via proximity effects. The strength of the proximity effect depends on the overlap of the atomic orbitals, therefore, changing the interlayer distance via hydrostatic pressure can be utilized to enhance the interlayer coupling between the layers. In this work, we report measurements on a graphene/WSe2 heterostructure exposed to increasing hydrostatic pressure. A clear transition from weak localization to weak antilocalization is visible as the pressure increases, demonstrating the increase of induced SOC in graphene.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
William Mayer ◽  
Matthieu C. Dartiailh ◽  
Joseph Yuan ◽  
Kaushini S. Wickramasinghe ◽  
Enrico Rossi ◽  
...  

AbstractIn a standard Josephson junction the current is zero when the phase difference between superconducting leads is zero. This condition is protected by parity and time-reversal symmetries. However, the combined presence of spin–orbit coupling and magnetic field breaks these symmetries and can lead to a finite supercurrent even when the phase difference is zero. This is the so called anomalous Josephson effect—the hallmark effect of superconducting spintronics—which can be characterized by the corresponding anomalous phase shift. Here we report the observation of a tunable anomalous Josephson effect in InAs/Al Josephson junctions measured via a superconducting quantum interference device. By gate controlling the density of InAs, we are able to tune the spin–orbit coupling in the Josephson junction. This gives us the ability to tune the anomalous phase, and opens new opportunities for superconducting spintronics, and new possibilities for realizing and characterizing topological superconductivity.


Sign in / Sign up

Export Citation Format

Share Document