scholarly journals Phonon contribution to electrical resistance of acceptor-doped single-wall carbon nanotubes assembled into transparent films

2016 ◽  
Vol 94 (24) ◽  
Author(s):  
V. I. Tsebro ◽  
A. A. Tonkikh ◽  
D. V. Rybkovskiy ◽  
E. A. Obraztsova ◽  
E. I. Kauppinen ◽  
...  
2009 ◽  
Vol 1204 ◽  
Author(s):  
Letian Lin ◽  
Lu-Chang Qin ◽  
Sean Washburn ◽  
Scott Paulson

AbstractThe properties of a carbon nanotube (CNT), in particular a single-wall carbon nanotube (SWNT), are highly sensitive to the atomic structure of the nanotube described by its chirality (chiral indices). We have grown isolated SWNTs on a silicon substrate using chemical vapor deposition (CVD) and patterned sub-micron probes using electron beam lithography. The SWNT was exposed by etching the underlying substrate for transmission electron microscope (TEM) imaging and diffraction studies. For each individual SWNT, its electrical resistance was measured by the four-probe method at room temperature and the chiral indices of the same SWNT were determined by nano-beam electron diffraction. The contact resistances were reduced by annealing to typically 3-5 kΩ. We have measured the I-V curve and determined the chiral indices of each nanotube individually from four SWNTs selected randomly – two are metallic and two are semiconducting. We will present the electrical resistances in correlation with the carbon nanotube diameter as well as the band gap calculated from the determined chiral indices for the semiconducting carbon nanotubes. These experimental results are also discussed in connection with theoretical estimations.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hammad Younes ◽  
Md. Mahfuzur Rahman ◽  
Amal Al Ghaferi ◽  
Irfan Saadat

The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.


ACS Nano ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 881-887 ◽  
Author(s):  
John M. Harris ◽  
Ganjigunte R. Swathi Iyer ◽  
Anna K. Bernhardt ◽  
Ji Yeon Huh ◽  
Steven D. Hudson ◽  
...  

2015 ◽  
Vol 57 (5) ◽  
pp. 447-457 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhaffez

2005 ◽  
Vol 30 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Szymon Los ◽  
Philippe Azais ◽  
Roland JM Pellenq ◽  
Yannick Breton ◽  
Olivier Isnard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document