scholarly journals Clustering and α -capture reaction rate from ab initio symmetry-adapted descriptions of Ne20

2020 ◽  
Vol 102 (4) ◽  
Author(s):  
A. C. Dreyfuss ◽  
K. D. Launey ◽  
J. E. Escher ◽  
G. H. Sargsyan ◽  
R. B. Baker ◽  
...  
1992 ◽  
Vol 282 ◽  
Author(s):  
Michael R. Zachariah ◽  
Wing Tsang

ABSTRACTAb initio molecular orbital calculations coupled to RRKM reaction rate theory have been conducted on some important reactions involved in the oxidation of silane in a high-temperature/high H2O environment. The results indicate thatH2O acts as an oxygen donor to SiH2 to form H3SiOH or SiH2O. Subsequent reactions involve the formation of (HSiOOH, H2Si(OH)2,:Si(OH)2 or SiO). In turn SiO polymerizes into planar rings, without an activation energy barrier. A list of calculated thermochemical data are also presented for a number of equilibrium species.


2020 ◽  
Vol 123 ◽  
pp. 102481
Author(s):  
S.B. Dubovichenko ◽  
N.A. Burkova ◽  
A.V. Dzhazairov-Kakhramanov ◽  
A.S. Tkachenko

2014 ◽  
Vol 9 (S307) ◽  
pp. 211-212
Author(s):  
Agnès Bischoff-Kim

AbstractHigh mass and low mass stars follow a similar evolution until the inert core phase that follows the end of the core helium burning stage. In particular, one common phase of stellar evolution is the alpha capture reaction that turns carbon into oxygen in the core. We can obtain constraints on this reaction rate by studying the remnants of low mass stars, as this is the ultimate reaction that occurs in their core. We also present results that allow us to test the time dependent calculations of diffusion in dense interiors.


Sign in / Sign up

Export Citation Format

Share Document