Analysis of nuclear fission properties with the Langevin approach in Fourier shape parametrization

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Li-Le Liu ◽  
Yong-Jing Chen ◽  
Xi-Zhen Wu ◽  
Zhu-Xia Li ◽  
Zhi-Gang Ge ◽  
...  
2018 ◽  
Vol 169 ◽  
pp. 00005
Author(s):  
F.A. Ivanyuk ◽  
C. Ishizuka ◽  
M.D. Usang ◽  
S. Chiba

We applied the four-dimensional Langevin approach to the description of fission of 235U by neutrons and calculated the dependence of the excitation energy of fission fragments on their mass number. For this we have fitted the compact just-before-scission configuration obtained by the Langevin calculations by the two separated fragments and calculated the intrinsic excitation and the deformation energy of each fragment accurately taking into account the shell and pairing effects and their dependence on the temperature and mass of the fragments. For the sharing of energy between the fission fragments we have used the simplest and most reliable assumption - the temperature of each fragment immediately after the neck rupture is the same as the temperature of mother nucleus just before scission. The calculated excitation energy of fission fragments clearly demonstrates the saw-tooth structure in the dependence on fragment mass number.


2021 ◽  
Vol 256 ◽  
pp. 00007
Author(s):  
F.A. Ivanyuk ◽  
S. Chiba

We apply the four-dimensional Langevin approach to the description of fission of 235U by neutrons and calculate the dependence of the excitation energy of fission fragments on their mass number. For this we run the Langevin equations until the compound nucleus splits into two separated fragments. This is possible since the we used in this work two-center shell model shape parametrization that describes well both compact and separated shapes. The excitation energies of each fragment are calculated assuming that the temperatures of both fragments are the same. The deformation energy of the fragment immediately after scission is added to its excitation energy. The saw-tooth structure of the dependence neutron multiplicity on the fragment’s mass number in reaction 235U + n at En = 5 Mev is qualitatively reproduced.


2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Chikako Ishizuka ◽  
Mark D. Usang ◽  
Fedir A. Ivanyuk ◽  
Joachim A. Maruhn ◽  
Katsuhisa Nishio ◽  
...  

1980 ◽  
Vol 131 (7) ◽  
pp. 329 ◽  
Author(s):  
G.V. Danilyan

Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


1999 ◽  
Vol 30 (6) ◽  
pp. 666 ◽  
Author(s):  
V. I. Kuznetsov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document