nuclear fusion reactions
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Author(s):  
F. Nespoli ◽  
S. Masuzaki ◽  
K. Tanaka ◽  
N. Ashikawa ◽  
M. Shoji ◽  
...  

AbstractIn state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 508 (2) ◽  
pp. 2134-2141
Author(s):  
D A Baiko

ABSTRACT A reliable description of nuclear fusion reactions in inner layers of white dwarfs and envelopes of neutron stars is important for realistic modelling of a wide range of observable astrophysical phenomena from accreting neutron stars to Type Ia supernovae. We study the problem of screening of the Coulomb barrier impeding the reactions by a plasma surrounding the fusing nuclei. Numerical calculations of the screening factor are performed from the first principles with the aid of quantum-mechanical path integrals in the model of a one-component plasma of atomic nuclei for temperatures and densities typical for dense liquid layers of compact degenerate stars. We do not rely on various quasi-classic approximations widely used in the literature, such as factoring out the tunnelling process, tunnelling in an average spherically symmetric mean-force potential, usage of classic free energies and pair correlation functions, linear mixing rule, and so on. In general, a good agreement with earlier results from the thermonuclear limit to Γ ∼ 100 is found. For a very strongly coupled liquid 100 ≲ Γ ≤ 175, a deviation from currently used parametrizations of the reaction rates is discovered and approximated by a simple analytic expression. The developed method of nuclear reaction rate calculations with account of plasma screening can be extended to ion mixtures and crystallized phases of stellar matter.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 13 (1) ◽  
pp. 59-70
Author(s):  
Vladimir I. Vysotskii ◽  
◽  
Alla A. Kornilova ◽  
Mykhaylo V. Vysotskyy ◽  
◽  
...  

The paper considers the features and quantitative characteristics of the first successful laser experiments on the formation of a thermonuclear plasma and registration of neutrons in nuclear fusion reactions under pulsed irradiation of a LiD crystal. Quantitative analysis shows that the production of neutrons recorded in these experiments is not associated with thermonuclear reactions in hot laser plasma. The most probable mechanism of neutron generation is associated with nuclear reactions at low energies and is due to the formation of coherent correlated states (CCS) of deuterons. In this experiment, such states can be formed in two different processes: due to the effect of a shock wave in the undisturbed part of the target lattice on the vibrational state of deuterium nuclei or when deuterium nuclei with energy of about 500 eV move in the lattice. This part of the deuterium nuclei corresponds to the high-energy "tail" of the Maxwellian distribution of the total flux of particles entering from the laser plasma into the interplanar channel. In this second case, the process of the formation of the CCS is associated with the longitudinal periodicity of the interplanar crystal channel, which is equivalent to a nonstationary oscillator in the own coordinate system of moving particle. The expediency of repeating these experiments is shown, in which, in addition to neutrons, one should expect a more efficient generation of other nuclear fusion products due to low-energy reactions involving lithium isotopes from the target composition.


2021 ◽  
Vol 30 (05) ◽  
pp. 2150034
Author(s):  
Surajit Kalita ◽  
Banibrata Mukhopadhyay ◽  
T. R. Govindarajan

Chandrasekhar made the startling discovery about nine decades back that the mass of compact object white dwarf has a limiting value once nuclear fusion reactions stop therein. This is the Chandrasekhar mass-limit, which is [Formula: see text] for a nonrotating non-magnetized white dwarf. On approaching this limiting mass, a white dwarf is believed to spark off with an explosion called type Ia supernova, which is considered to be a standard candle. However, observations of several over-luminous, peculiar type Ia supernovae indicate the Chandrasekhar mass-limit to be significantly larger. By considering noncommutativity among the components of position and momentum variables, hence uncertainty in their measurements, at the quantum scales, we show that the mass of white dwarfs could be significantly super-Chandrasekhar and thereby arrive at a new mass-limit [Formula: see text], explaining a possible origin of over-luminous peculiar type Ia supernovae. The idea of noncommutativity, apart from the Heisenberg’s uncertainty principle, is there for quite sometime, without any observational proof however. Our finding offers a plausible astrophysical evidence of noncommutativity, arguing for a possible second standard candle, which has many far-reaching implications.


2021 ◽  
Vol 6 (1) ◽  
pp. 19-30
Author(s):  
Nelson Enrique Bolivar ◽  
Ivaylo T. Vasilev

In nature all of the heavy elements are produced by nuclear fusion reactions, mostly in supernova explosions and neutron star collisions, so, this is to date the only known and proven mechanism to produce heavy elements in usable quantities. In this work we approach a difficult challenge, namely, the possibility of fusion of heavy elements, taking as a test case the heaviest observationally stable element - ²³⁸U, showing that it is feasible, at least in principle with the help of existing technologies. The main idea behind is to show that fusion of lighter - than z=184 - nuclei is conceptually viable examining the tunnel effect assisted by an auxiliary field that will produce a Sauter like effect, and this is the pathway to explore the synthesis of elements higher than z=118. The production of theoretical untested elements like Unoctquadium-184 or close Z species could open a new chapter in the physics of super-heavy elements, and leads to a deeper understanding of nuclear decay channels and stability conditions. Nuclear fusion of heavy elements will open the breach to produce neutron rich elements, so we may obtain a deep insight into the physics of the island of stability. This work will review basic aspects of fusion physics related to the assisted fusion mechanism. An enhanced fusion perspective is found generalizing the work of [1] to space dependent fields and the cases of ²H, ¹⁰⁶Pd and ²³⁸U are presented for several test fields. A final section reviewing laser confinement fusion actual experiments capable of achieving the required energies is also reported.


Author(s):  
R. Diehl ◽  
M. Lugaro ◽  
A. Heger ◽  
A. Sieverding ◽  
X. Tang ◽  
...  

Abstract The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies, $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$ . Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$ , the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of $\gamma$ rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of $^{26}\mathrm{Al}$ to $^{60}\mathrm{Fe}$ eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.


Sign in / Sign up

Export Citation Format

Share Document