scholarly journals Potential model within a bound-to-continuum approach for low-energy nucleon radiative capture by C12 and O16

2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Nguyen Le Anh ◽  
Phan Nhut Huan ◽  
Bui Minh Loc
Author(s):  
Abdul Kabir ◽  
Jameel-Un Nabi

Abstract Radiative capture p+9Be → 10B+γ at energies bearing astrophysical importance is a key process for the spectroscopic study of 10B. In this work, we consider the radiative capture cross-section for the 9Be(p, γ)10B within the framework of the potential model and the R-matrix method for the multi-entrance channel cases. In certain cases, when the potential fails, therefore, the R-matrix approach is better to use for the description of partial components of the cross-section that have sharp or broad resonances. For all possible electric and magnetic dipole transitions, partial components of the astrophysical S-factor are computed. The computed value of the total S-factor at zero energy is consistent with the reported results.


2019 ◽  
Author(s):  
Yasemin Basdogan ◽  
Mitchell C. Groenenboom ◽  
Ethan Henderson ◽  
Sandip De ◽  
Susan Rempe ◽  
...  

<div><div><div><p>Toward practical modeling of local solvation effects of any solute in any solvent, we report a static and all-quantum mechanics based cluster-continuum approach for calculating single ion solvation free energies. This approach uses a global optimization procedure to identify low energy molecular clusters with different numbers of explicit solvent molecules and then employs the Smooth Overlap for Atomic Positions (SOAP) kernel to quantify the similarity between different low energy solute environments. From these data, we use sketch-map, a non-linear dimensionality reduction algorithm, to obtain a two-dimensional visual representation of the similarity between solute environments in differently sized microsolvated clusters. Without needing either dynamics simulations or an a priori knowledge of local solvation structure of the ions, this approach can be used to calculate solvation free energies with errors within five percent of experimental measurements for most cases.</p></div></div></div>


1995 ◽  
Vol 213-214 ◽  
pp. 538-540 ◽  
Author(s):  
Hiroshi Mizuseki ◽  
Kaoru Shibata ◽  
Kenji Suzuki

Sign in / Sign up

Export Citation Format

Share Document