scholarly journals Proton number fluctuations in partial chemical equilibrium

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Boris Tomášik ◽  
Paula Hillmann ◽  
Marcus Bleicher
Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami

This paper describes an application of the partial chemical equilibrium method considered chemical kinetics in computational fluid dynamics (CFD). In this method, fuels and oxidants are mixed at a turbulent rate so that a mixture gas of fuel and oxygen is generated. Next, the mixture gas of fuel and oxygen is burnt by molecular diffusion thereby resulting in combustion gases. The turbulent mixture rate is estimated by the eddy dissipation model and the burning velocity is evaluated by the Arrhenius equation. Finally, the combustion products are calculated by the chemical equilibrium method by using the combustion gases. One of the advantages of this method is its ability to calculate the combustion products without using chemical equations. The chemical equilibrium method requires only thermo-chemical functions (specific heat, standard enthalpy, etc). This method can be applied to incinerators or some complex combustion instruments and it can predict the intermediate chemical species of dioxins, etc.


1992 ◽  
Vol 283 ◽  
Author(s):  
B. Drevillon ◽  
I. Solomon ◽  
M. Fang

ABSTRACTThe growth of microcrystalline silicon (μc-Si), deposited by a succession of silane and hydrogen plasmas, is investigated in situ by ellipsometry in the visible and near UV-range. It is found that the amorphous tissue is more affected by the hydrogen etching than the crystallites. The model of “selective etching” emerges from these measurements. Although this model is compatible with the “partial chemical equilibrium” of Vep̌ek, it is somewhat more general and explains the porous nature of the (μc-Si) as well as the many atomic layers deposition-etching sequences.


1985 ◽  
Vol 10 (6) ◽  
pp. 883-891 ◽  
Author(s):  
M. Allegrini ◽  
G. Alzetta ◽  
P. Bicchi ◽  
S. Gozzini ◽  
L. Moi

Sign in / Sign up

Export Citation Format

Share Document