plasma deposition
Recently Published Documents


TOTAL DOCUMENTS

1439
(FIVE YEARS 157)

H-INDEX

57
(FIVE YEARS 6)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Gregor Primc ◽  
Domen Paul ◽  
Miran Mozetič

Carbon nanowalls are promising materials for various electrochemical devices due to their chemical inertness, desirable electrical conductivity, and excellent surface-to-mass ratio. Standard techniques, often based on plasma-assisted deposition using gaseous precursors, enable the synthesis of top-quality carbon nanowalls, but require long deposition times which represents a serious obstacle for mass applications. Here, an alternative deposition technique is presented. The carbon nanowalls were synthesized on titanium substrates using various polymers as solid precursors. A solid precursor and the substrate were mounted into a low-pressure plasma reactor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H-mode at the power of 500 W. Spontaneous growth of carbon nanomaterials was observed for a variety of polymer precursors. The best quality of carbon nanowalls was obtained using aliphatic polyolefins. The highest growth rate of a thin film of carbon nanowalls of about 200 nm/s was observed. The results were explained by different degradation mechanisms of polymers upon plasma treatment and the surface kinetics.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Jacek Tyczkowski ◽  
Hanna Kierzkowska-Pawlak

Cold (non-equilibrium) plasma techniques have long been used as plasma deposition methods to create new materials, often with unique properties, which cannot be produced any other way, as well as plasma treatment methods for the sophisticated modification of conventional materials [...]


Author(s):  
Alexander Gudovskikh ◽  
Artem Baranov ◽  
Alexander V. Uvarov ◽  
Dmitrii Kudryashov ◽  
Jean Paul Kleider

Abstract Microcrystalline GaP/Si multilayer structures grown on GaP substrates using combination of PE-ALD for GaP and PECVD for Si layers deposition are studied by three main space charge capacitance techniques: C-V profiling, admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS), which have been used on Schottky barriers formed on the GaP/Si multilayer structures. C-V profiling qualitatively demonstrates an electron accumulation in the Si/GaP wells. However, quantitative determination of the concentration and spatial position of its maximum is limited by the strong frequency dependence of the capacitance caused by electron capture/emission processes in/from the Si/GaP wells. These processes lead to signatures in AS and DLTS with activation energies equal to 0.39±0.05 eV and 0.28±0.05 eV, respectively, that are linked to the energy barrier at the GaP/Si interface. It is shown that the value obtained by AS (0.39±0.05 eV) is related to the response from Si/GaP wells located in the quasi-neutral region of the Schottky barrier, and it corresponds to the conduction band offset at the GaP/Si interface, while DLTS rather probes wells located in the space charge region closer to the Schottky interface where the internal electric field yields to a lowering of the effective barrier in the Si/GaP wells. Two additional signatures were detected by DLTS, which are identified as defect levels in GaP. The first one is associated to the SiGa+VP complex, while the second was already detected in single microcrystalline GaP layers grown by PE-ALD.


2021 ◽  
Vol 56 ◽  
pp. 97-107
Author(s):  
M. S. Zayats ◽  

A low-temperature (substrate heating temperature up to 400 °C) ion-plasma technology for the formation of nanostructured AlN and BN films by the method of high-frequency reactive magnetron sputtering of the corresponding targets has been developed (the modernized installation "Cathode-1M"), which has in its technological cycle the means of physical and chemical modification, which allow to purposefully control the phase composition, surface morphology, size and texture of nanocrystalline films. The possibility of using the method of high-frequency magnetron sputtering for deposition of transparent hexagonal BN films in the nanoscale state on quartz and silicon substrates is shown. Atomic force microscopy (AFM) has shown that AlN films can have an amorphous or polycrystalline surface with grain sizes of approximately 20-100 nm, with the height of the nanoparticles varying from 3 to 10 nm and the degree of surface roughness from 1 to 10 nm. It was found that the dielectric penetration of polycrystalline AlN films decreases from 10 to 3.5 at increased frequencies from 25 Hz to 1 MHz, and the peak tangent of the dielectric loss angle reaches 0.2 at 10 kHz. Such features indicate the existence of spontaneous polarization of dipoles in the obtained AlN films. Interest in dielectric properties in AlN / Si structures it is also due to the fact that there are point defects, such as nitrogen vacancies and silicon atoms, which diffuse from the silicon substrate during synthesis and play an important role in the dielectric properties of AlN during the formation of dipoles. The technology makes it possible, in a single technological cycle, to produce multilayer structures modified for specific functional tasks with specified characteristics necessary for the manufacture of modern electronics, optoelectronics and sensorics devices. It should also be noted that the technology of magnetron sputtering (installation "Cathode-1M") is highly productive, energetically efficient and environmentally friendly in comparison with other known technologies for creating semiconductor structures and allows them to be obtained with minimal changes in the technological cycle.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052095
Author(s):  
V I Kuzmin ◽  
I P Gulyaev ◽  
D V Sergachev ◽  
B V Palagushkin ◽  
O Y Lebedev ◽  
...  

Abstract Most industrial installations for plasma spraying of powder materials are equipped by nozzles with local (radial) powder input into the thermal plasma jet generated by the plasma torch. Such a local input of the sprayed material significantly perturbs the flow of the plasma jet, and causes dispersion of temperature and velocity of the particles of the sprayed powder materials. This work presents study of high-temperature heterogeneous flows generated by the electric arc plasma torch PNK - 50 with an annular (circular) input unit of powder materials with their gas-dynamic focusing developed at ITAM SB RAS. The performed experiments proved that the annular injection of a powder material guarantees the stable formation of a highly concentrated flow of thermal plasma with particles of sprayed powder materials. The comparative analysis clearly showed the advantages of annular powder input unit with its gas-dynamic focusing. In contrast to local point injection, axisymmetric annular injection practically does not disturb the jet of thermal plasma and, thus, significantly increases the efficiency of interphase exchange.


Sign in / Sign up

Export Citation Format

Share Document