Role of final-state interactions in the calculation of the hadronic tensor of nuclear matter

1991 ◽  
Vol 44 (4) ◽  
pp. 1460-1466 ◽  
Author(s):  
L. S. Celenza ◽  
C. M. Shakin ◽  
Hui-Wen Wang
2014 ◽  
Vol 26 ◽  
pp. 1460082 ◽  
Author(s):  
IGOR I. STRAKOVSKY ◽  
WILLIAM J. BRISCOE ◽  
ALEXANDER E. KUDRYAVTSEV ◽  
VLADIMIR E. TARASOV

We present an overview of the SAID group effort to analyze new γn → π-p cross sections vs. the world database to get new multipoles and determine neutron electromagnetic couplings. The differential cross section for the processes γn → π-p was extracted from new measurements at CLAS and MAMI-B accounting for Fermi motion effects in the impulse approximation (IA) as well as NN- and πN-FSI effects beyond the IA. We evaluated results of several pion photoproduction analyses and compared πN PWA results as a constraint for analyses of pion photoproduction data (Watson's theorem).


2020 ◽  
Vol 6 ◽  
pp. 58
Author(s):  
M. Petraki ◽  
E. Mavrommatis ◽  
J. W. Clark

The half-diagonal two-body density matrix ρ_{2h}/i(r1,r2,r') plays a central role in most theoretical treatments of the propagation of ejected nucléons and their final state interactions (FSI) in the nuclear medium. In this work based on the analysis of Ristig and Clark, we present the results of a Fermi hypernetted-chain calculation ρ_{2h}/i(r1,r2,r') for infinite symmetrical nuclear matter using a Jastrow-correlated model. The dependence of ρ_{2h} on the variables involved has been investigated in detail. Significant departures from ideal Fermi gas behavior in certain domains demonstrate the importance of short-range correlations. A comparison of our results with the predictions of Silver's approximation to ρ_{2h}, which has been employed in some treatments of FSI, reveals certain shortcomings of this approximation. The Fermi hypernetted-chain results obtained here will serve as a key input to an approximate treatment of FSI in inclusive quasielastic electron scattering from nuclear matter.


2012 ◽  
Vol 225-227 ◽  
pp. 75-79 ◽  
Author(s):  
Bastian Kubis ◽  
Franz Niecknig ◽  
Sebastian P. Schneider

Sign in / Sign up

Export Citation Format

Share Document