scholarly journals Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches

2021 ◽  
Vol 104 (11) ◽  
Author(s):  
A. Avasthi ◽  
T. W. Bowyer ◽  
C. Bray ◽  
T. Brunner ◽  
N. Catarineu ◽  
...  
2010 ◽  
Vol 70 (4) ◽  
pp. 927-943 ◽  
Author(s):  
R. Arnold ◽  
C. Augier ◽  
J. Baker ◽  
A. S. Barabash ◽  
A. Basharina-Freshville ◽  
...  

2018 ◽  
Vol 33 (35) ◽  
pp. 1850198 ◽  
Author(s):  
Debasish Borah ◽  
Arnab Dasgupta ◽  
Sudhanwa Patra

We present a detailed discussion on neutrinoless double beta decay [Formula: see text] within left–right symmetric models based on the gauge symmetry of type [Formula: see text] as well as [Formula: see text] where fermion masses including that of neutrinos are generated through a universal seesaw mechanism. We find that one or more of the right-handed neutrinos could be as light as a few keV if left–right symmetry breaking occurs in the range of a few TeV to 100 TeV. With such light right-handed neutrinos, we perform a detailed study of new physics contributions to [Formula: see text] and constrain the model parameters from the latest experimental bound on such a rare decay process. We find that the new physics contribution to [Formula: see text] in such a scenario, particularly the heavy–light neutrino mixing diagrams, can individually saturate the existing experimental bounds, but their contributions to total [Formula: see text] half-life cancel each other due to unitarity of the total [Formula: see text] mass matrix. The effective contribution to half-life therefore, arises from the purely left and purely right neutrino and gauge boson mediated diagrams. We find that the parameter space saturating the [Formula: see text] bounds remains allowed from the latest experimental bounds on charged lepton flavor violating decays like [Formula: see text]. We finally include the bounds from cosmology and supernova to constrain the parameter space of the model.


Author(s):  
N.S. Rumyantseva ◽  
K.N. Gusev

Neutrinoless double beta decay is a lepton number violating process which is not allowed in the Standard Model (SM) of the electroweak interaction. The discovery of this process will be an unambiguous confirmation of the existence of New Physics outside the SM. At this moment many experiments are being conducted aimed at searching for neutrinoless double beta decay on various isotopes (76Ge, 136Xe, 130Te, 100Mo, etc.). The paper presents a brief overview of the results of some current projects, such as GERDA, MAJORANA, KamLAND-Zen, EXO-200, CUORE and SuperNEMO, and plans for creating a new generation experiments.


Sign in / Sign up

Export Citation Format

Share Document