neutrino sector
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yi Liu ◽  
Stefano Moretti ◽  
Harri Waltari

Abstract We study the possibility of measuring neutrino Yukawa couplings in the Next-to-Minimal Supersymmetric Standard Model with right-handed neutrinos (NMSSMr) when the lightest right-handed sneutrino is the Dark Matter (DM) candidate, by exploiting a ‘dijet + dilepton + Missing Transverse Energy’ (MET or "Image missing") signature. We show that, contrary to the miminal realisation of Supersymmetry (SUSY), the MSSM, wherein the DM candidate is typically a much heavier (fermionic) neutralino state, this extended model of SUSY offers one with a much lighter (bosonic) state as DM that can then be produced at the next generation of e+e− colliders with energies up to 500 GeV or so. The ensuing signal, energing from chargino pair production and subsequent decay, is extremely pure so it also affords one with the possibility of extracting the Yukawa parameters of the (s)neutrino sector. Altogether, our results serve the purpose of motivating searches for light DM signals at such machines, where the DM candidate can have a mass around the Electro-Weak (EW) scale.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Maud Sarazin ◽  
Jordan Bernigaud ◽  
Björn Herrmann

Abstract We study the dark matter phenomenology of scotogenic frameworks through a rather illustrative model extending the Standard Model by scalar and fermionic singlets and doublets. Such a setup is phenomenologically attractive since it provides the radiative generation of neutrino masses, while also including viable candidates for cold dark matter. We employ a Markov Chain Monte Carlo algorithm to explore the associated parameter space in view of numerous constraints stemming from the Higgs mass, the neutrino sector, dark matter, and lepton-flavour violating processes. After a general discussion of the results, we focus on the case of fermionic dark matter, which remains rather uncovered in the literature so far. We discuss the associated phenomenology and show that in this particular case a rather specific mass spectrum is expected with fermion masses just above 1 TeV. Our study may serve as a guideline for future collider studies.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
M. Miskaoui ◽  
M. A. Loualidi

Abstract We propose a model of fermion masses and mixings based on SU(5) grand unified theory (GUT) and a D4 flavor symmetry. This is a highly predictive 4D SU(5) GUT with a flavor symmetry that does not contain a triplet irreducible representation. The Yukawa matrices of quarks and charged leptons are obtained after integrating out heavy messenger fields from renormalizable superpotentials while neutrino masses are originated from the type I seesaw mechanism. The group theoretical factors from 24- and 45-dimensional Higgs fields lead to ratios between the Yukawa couplings in agreement with data, while the dangerous proton decay operators are highly suppressed. By performing a numerical fit, we find that the model captures accurately the mixing angles, the Yukawa couplings and the CP phase of the quark sector at the GUT scale. The neutrino masses are generated at the leading order with the prediction of trimaximal mixing while an additional effective operator is required to account for the baryon asymmetry of the universe (BAU). The model is remarkably predictive because only the normal neutrino mass ordering and the lower octant of the atmospheric angle are allowed while the CP conserving values of the Dirac neutrino phase δCP are excluded. Moreover, the predicted values of the effective Majorana mass mββ can be tested at future neutrinoless double beta decay experiments. An analytical and a numerical study of the BAU via the leptogenesis mechanism is performed. We focused on the regions of parameter space where leptogenesis from the lightest right-handed neutrino is successfully realized. Strong correlations between the parameters of the neutrino sector and the observed BAU are obtained.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Daniel Green ◽  
David E. Kaplan ◽  
Surjeet Rajendran

Abstract The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 47
Author(s):  
Ágnes Roberts

An overview of searches related to neutrinos of astronomical and astrophysical origin performed within the framework of the Standard-Model Extension is provided. For this effective field theory, key definitions, intriguing physical consequences, and the mathematical formalism are summarized within the neutrino sector to search for effects from a background that could lead to small deviations from Lorentz symmetry. After an introduction to the fundamental theory, examples of various experiments within the astronomical and astrophysical context are provided. Order-of-magnitude bounds of SME coefficients are shown illustratively for the tight constraints that this sector allows us to place on such violations.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Leon M. G. de la Vega ◽  
Newton Nath ◽  
Stefan Nellen ◽  
Eduardo Peinado

AbstractWe propose UV-completions of Froggatt–Nielsen–Peccei–Quinn models of fermion masses and mixings with flavored axions, by incorporating heavy fields. Here, the U(1) Froggatt–Nielsen symmetry is identified with the Peccei–Quinn symmetry to solve the strong CP problem along with the mass hierarchies of the Standard Model fermions. We take into account leading order contributions to the fermion mass matrices giving rise to Nearest-Neighbour-Interaction structure in the quark sector and $$A_2$$ A 2 texture in the neutrino sector. A comprehensive numerical analysis has been performed for the fermion mass matrices. Subsequently, we investigate the resulting axion flavor violating couplings and the axion-photon coupling arising from the model.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karsten Jedamzik ◽  
Levon Pogosian ◽  
Gong-Bo Zhao

AbstractThe mismatch between the locally measured expansion rate of the universe and the one inferred from the cosmic microwave background measurements by Planck in the context of the standard ΛCDM, known as the Hubble tension, has become one of the most pressing problems in cosmology. A large number of amendments to the ΛCDM model have been proposed in order to solve this tension. Many of them introduce new physics, such as early dark energy, modifications of the standard model neutrino sector, extra radiation, primordial magnetic fields or varying fundamental constants, with the aim of reducing the sound horizon at recombination r⋆. We demonstrate here that any model which only reduces r⋆ can never fully resolve the Hubble tension while remaining consistent with other cosmological datasets. We show explicitly that models which achieve a higher Hubble constant with lower values of matter density Ωmh2 run into tension with the observations of baryon acoustic oscillations, while models with larger Ωmh2 develop tension with galaxy weak lensing data.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


Sign in / Sign up

Export Citation Format

Share Document