scholarly journals Upper limits on persistent gravitational waves using folded data and the full covariance matrix from Advanced LIGO’s first two observing runs

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Deepali Agarwal ◽  
Jishnu Suresh ◽  
Sanjit Mitra ◽  
Anirban Ain
2005 ◽  
Vol 95 (22) ◽  
Author(s):  
B. Abbott ◽  
R. Abbott ◽  
R. Adhikari ◽  
J. Agresti ◽  
P. Ajith ◽  
...  

2019 ◽  
Vol 147 (9) ◽  
pp. 3467-3480 ◽  
Author(s):  
Sijing Ren ◽  
Lili Lei ◽  
Zhe-Min Tan ◽  
Yi Zhang

Abstract Ensemble sensitivity is often a diagonal approximation to the multivariate regression, leading to a simple univariate regression. Comparatively, the multivariate ensemble sensitivity retains the full covariance matrix when computing the multivariate regression. The performances of both univariate and multivariate ensemble sensitivities in multiscale flows have not been thoroughly examined, and the demonstration of the latter in realistic applications has been sparse. A high-resolution ensemble forecast of Typhoon Haiyan (2013) is used to examine the performances of the two ensemble sensitivities. Compared to the multivariate sensitivity, the univariate sensitivity overestimates the forecast metric, especially at higher levels. To increase the predicted Haiyan’s intensity, multivariate ensemble sensitivity gives initial perturbations characterized by a warming area around the center of the storm, an increased moisture area around the eyewall, a stronger primary circulation around the radius of maximum wind, and stronger inflow at low levels and stronger outflow at high levels. Perturbed initial condition experiments verify that the predicted response from the multivariate sensitivity is more accurate than that from the univariate sensitivity. Therefore, the ability of multivariate sensitivity to provide more accurate predicted responses than the univariate sensitivity has been demonstrated in a realistic multiscale flow application.


2005 ◽  
Vol 72 (10) ◽  
Author(s):  
B. Abbott ◽  
R. Abbott ◽  
R. Adhikari ◽  
A. Ageev ◽  
J. Agresti ◽  
...  

2021 ◽  
Vol 922 (1) ◽  
pp. 71
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Abstract We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86–97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode-driven spin-down in PSR J0537–6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation.


2004 ◽  
Vol 21 (5) ◽  
pp. S671-S676 ◽  
Author(s):  
B Allen ◽  
G Woan ◽  
(for the LIGO Scientific Collaboration): ◽  
B Abbott ◽  
R Abbott ◽  
...  

Author(s):  
Caterina Tiburzi

AbstractPulsar Timing Array experiments exploit the clock-like behaviour of an array of millisecond pulsars, with the goal of detecting low-frequency gravitational waves. Pulsar Timing Array experiments have been in operation over the last decade, led by groups in Europe, Australia, and North America. These experiments use the most sensitive radio telescopes in the world, extremely precise pulsar timing models and sophisticated detection algorithms to increase the sensitivity of Pulsar Timing Arrays. No detection of gravitational waves has been made to date with this technique, but Pulsar Timing Array upper limits already contributed to rule out some models of galaxy formation. Moreover, a new generation of radio telescopes, such as the Five hundred metre Aperture Spherical Telescope and, in particular, the Square Kilometre Array, will offer a significant improvement to the Pulsar Timing Array sensitivity. In this article, we review the basic concepts of Pulsar Timing Array experiments, and discuss the latest results from the established Pulsar Timing Array collaborations.


2017 ◽  
Vol 847 (1) ◽  
pp. 47 ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document