population synthesis
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 158)

H-INDEX

61
(FIVE YEARS 12)

2021 ◽  
Vol 163 (1) ◽  
pp. 16
Author(s):  
Caitlin Moeller ◽  
Daniela Calzetti

Abstract We combine archival images for the nearby galaxy M33 (Triangulum Galaxy) from the ultraviolet (UV) to the infrared to derive ages, masses, and extinctions for the young star cluster population, and compare our physical parameters with published ones. Our goal is to test the robustness of clusters ages and masses, and possibly improve on existing ones both by expanding the wavelength range of the spectral-energy distribution (SED) fits and by using more recent population synthesis models. The rationale for this experiment is to verify the sensitivity of the clusters physical parameters to observational setups and model choices that span those commonly found in the literature. We derive the physical parameters of 137 clusters, using SEDs measured in eight UV-to-I bands, including Hα, from GALEX and ground-based images. We also add the 24 μm image from the Spitzer Space Telescope to help break some age degeneracies. We find that our derived cluster ages show significant differences with earlier determinations, while the masses remain relatively insensitive to the fitting approach adopted. We also highlight an already known difficulty in recovering old, low-extinction clusters, as SED-fitting codes tend to prefer younger, higher extinction solutions when the extinction is a free parameter. We publish updated ages, masses, and extinctions, with uncertainties for all sample star clusters, together with their photometry. Given the proximity of M33, this represents an important population to secure for the study of star formation and cluster evolution in spirals.


2021 ◽  
Vol 5 (11) ◽  
pp. 275
Author(s):  
Adrian S. Hamers

Abstract I present a numerical fit to the peak harmonic gravitational wave frequency emitted by an eccentric binary system in the post-Newtonian approximation. This fit significantly improves upon a previous commonly-used fit in population synthesis studies, in particular for eccentricities ≲0.8.


2021 ◽  
Vol 922 (2) ◽  
pp. 174
Author(s):  
Kenny X. Van ◽  
Natalia Ivanova

Abstract We present a new method for constraining the mass transfer evolution of low-mass X-ray binaries (LMXBs)—a reverse population synthesis technique. This is done using the detailed 1D stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary systems spanning a comprehensive range of initial donor masses and orbital periods. We use the recently developed convection and rotation-boosted (CARB) magnetic braking scheme. The CARB magnetic braking scheme is the only magnetic braking prescription capable of reproducing an entire sample of well-studied persistent LMXBs—those with mass ratios, periods, and mass transfer rates that have been observationally determined. Using the reverse population synthesis technique, where we follow any simulated system that successfully reproduces an observed LMXB backward, we have constrained possible progenitors for each observed well-studied persistent LMXB. We also determined that the minimum number of LMXB formations in the Milky Way is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation rate is 9000 LMXB Gyr−1. The technique we describe can be applied to any observed LMXB with well-constrained mass ratio, period, and mass transfer rate. With the upcoming GAIA DR3 containing information on binary systems, this technique can be applied to the data release to search for progenitors of observed persistent LMXBs.


2021 ◽  
Vol 922 (2) ◽  
pp. L32
Author(s):  
Leah D. Zuckerman ◽  
Sirio Belli ◽  
Joel Leja ◽  
Sandro Tacchella

Abstract We analyze the distribution of rest-frame U − V and V − J colors for star-forming galaxies at 0.5 < z < 2.5. Using stellar population synthesis, stochastic star formation histories, and a simple prescription for the dust attenuation that accounts for the shape and inclination of galaxies, we construct a model for the distribution of galaxy colors. With only two free parameters, this model is able to reproduce the observed galaxy colors as a function of redshift and stellar mass remarkably well. Our analysis suggests that the wide range of dust attenuation values measured for star-forming galaxies at a given redshift and stellar mass is almost entirely due to the effect of inclination; if all galaxies at a given stellar mass were observed edge-on, they would show very similar dust attenuation. This result has important implications for the interpretation of dust attenuation measurements, the treatment of UV and IR luminosity, and the comparison between numerical simulations and observations.


2021 ◽  
Vol 922 (2) ◽  
pp. 110
Author(s):  
Monica Gallegos-Garcia ◽  
Christopher P L Berry ◽  
Pablo Marchant ◽  
Vicky Kalogera

Abstract Rapid binary population synthesis codes are often used to investigate the evolution of compact-object binaries. They typically rely on analytical fits of single-star evolutionary tracks and parameterized models for interactive phases of evolution (e.g., mass transfer on a thermal timescale, determination of dynamical instability, and common envelope) that are crucial to predict the fate of binaries. These processes can be more carefully implemented in stellar structure and evolution codes such as MESA. To assess the impact of such improvements, we compare binary black hole mergers as predicted in models with the rapid binary population synthesis code COSMIC to models ran with MESA simulations through mass transfer and common-envelope treatment. We find that results significantly differ in terms of formation paths, the orbital periods and mass ratios of merging binary black holes, and consequently merger rates. While common-envelope evolution is the dominant formation channel in COSMIC, stable mass transfer dominates in our MESA models. Depending upon the black hole donor mass, and mass-transfer and common-envelope physics, at subsolar metallicity, COSMIC overproduces the number of binary black hole mergers by factors of 2–35 with a significant fraction of them having merger times orders of magnitude shorter than the binary black holes formed when using detailed MESA models. Therefore we find that some binary black hole merger rate predictions from rapid population syntheses of isolated binaries may be overestimated by factors of ∼ 5–500. We conclude that the interpretation of gravitational-wave observations requires the use of detailed treatment of these interactive binary phases.


2021 ◽  
Vol 10 (11) ◽  
pp. 790
Author(s):  
Mohamed Khachman ◽  
Catherine Morency ◽  
Francesco Ciari

Microsimulation-based models, increasingly used in the transportation domain, require richer datasets than traditional models. Precisely enumerated population data being usually unavailable, transportation researchers generate their statistical equivalent through population synthesis. While various synthesizers are proposed to optimize the accuracy of synthetic populations, no insight is given regarding the impact of the geographic resolution on population synthesis quality. In this paper, we synthesize populations for the Census Metropolitan Areas of Montreal, Toronto, and Vancouver at various geographic resolutions using the enhanced iterative proportional updating algorithm. We define accuracy (representativeness of the sociodemographic characteristics of the entire population) and precision (representativeness of the real population’s spatial heterogeneity) as metrics of synthetic populations’ quality and measure the impact of the reference resolution on them. Moreover, we assess census targets’ harmonization and double geographic resolution control as means of quality improvement. We find that with a less aggregate reference resolution, the gain in precision is higher than the loss in accuracy. The most disaggregate resolution is thus found to be the best choice. Harmonization proves to further optimize synthetic populations while double control harms their quality. Hence, synthesizing at the Dissemination Area resolution using harmonized census targets is found to yield optimal synthetic populations.


Author(s):  
Martin Johnsen ◽  
Oliver Brandt ◽  
Sergio Garrido ◽  
Francisco Pereira

Author(s):  
B Posselt ◽  
A Karastergiou ◽  
S Johnston ◽  
A Parthasarathy ◽  
M J Keith ◽  
...  

Abstract We present pulse width measurements for a sample of radio pulsars observed with the MeerKAT telescope as part of the Thousand-Pulsar-Array (TPA) programme in the MeerTime project. For a centre frequency of 1284 MHz, we obtain 762 W10 measurements across the total bandwidth of 775 MHz, where W10 is the width at the 10 per cent level of the pulse peak. We also measure about 400 W10 values in each of the four or eight frequency sub-bands. Assuming, the width is a function of the rotation period P, this relationship can be described with a power law with power law index μ = −0.29 ± 0.03. However, using orthogonal distance regression, we determine a steeper power law with μ = −0.63 ± 0.06. A density plot of the period-width data reveals such a fit to align well with the contours of highest density. Building on a previous population synthesis model, we obtain population-based estimates of the obliquity of the magnetic axis with respect to the rotation axis for our pulsars. Investigating the width changes over frequency, we unambiguously identify a group of pulsars that have width broadening at higher frequencies. The measured width changes show a monotonic behaviour with frequency for the whole TPA pulsar population, whether the pulses are becoming narrower or broader with increasing frequency. We exclude a sensitivity bias, scattering and noticeable differences in the pulse component numbers as explanations for these width changes, and attempt an explanation using a qualitative model of five contributing Gaussian pulse components with flux density spectra that depend on their rotational phase.


Sign in / Sign up

Export Citation Format

Share Document