Exact finite-lattice method for two-dimensional gauge-fermion models:Z2gauge fermions

1990 ◽  
Vol 42 (12) ◽  
pp. 4190-4197
Author(s):  
Kazuhiro Ishida
1996 ◽  
Vol 74 (1-2) ◽  
pp. 54-64 ◽  
Author(s):  
D. D. Betts ◽  
S. Masui ◽  
N. Vats ◽  
G. E. Stewart

The well-known finite-lattice method for the calculation of the properties of quantum spin systems on a two-dimensional lattice at zero temperature was introduced in 1978. The method has now been greatly improved for the square lattice by including finite lattices based on parallelogram tiles as well as the familiar finite lattices based on square tiles. Dozens of these new finite lattices have been tested and graded using the [Formula: see text] ferromagnet. In the process new and improved estimates have been obtained for the XY model's ground-state energy per spin, ε0 = −0.549 36(30) and spontaneous magnetization per spin, m = 0.4349(10). Other properties such as near-neighbour, zero-temperature spin–spin correlations, which appear not to have been calculated previously, have been estimated to high precision. Applications of the improved finite-lattice method to other models can readily be carried out.


1979 ◽  
Vol 101 (3) ◽  
pp. 341-347 ◽  
Author(s):  
M. Couston ◽  
J. J. Angelini

An alternating-direction implicit algorithm is applied to solve an improved formulation of the low-frequency, small-disturbance, two-dimensional potential equation. Linear solutions are presented for oscillating trailing edge flaps, plunging and pitching flat-plate airfoils, and compared with results obtained by a doublet-lattice-method. Nonlinear calculations for both steady and unsteady flow problems are then compared with results obtained by using the complete Euler equations. The present procedure allows one to solve complex aerodynamic problems, including flows with shock waves.


1978 ◽  
Vol 56 (7) ◽  
pp. 902-912 ◽  
Author(s):  
Masuo Suzuki ◽  
Seiji Miyashita

An approximate wave function of the ground state of the spin [Formula: see text] XY magnet is derived using a variational method. This wave function yields estimates of the ground state energy and long-range order which agree very well with the results obtained by Betts and Oitmaa by a finite lattice method.


Sign in / Sign up

Export Citation Format

Share Document