scholarly journals Contact interactions involving right-handed neutrinos and SN 1987A

1998 ◽  
Vol 57 (3) ◽  
pp. 2005-2008 ◽  
Author(s):  
J. A. Grifols ◽  
E. Massó ◽  
R. Toldrà
1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1991 ◽  
Vol 16 (4) ◽  
pp. 443-457
Author(s):  
R. Lehoucq ◽  
Ph. Durouchouxa
Keyword(s):  
Sn 1987A ◽  

2020 ◽  
Vol 102 (11) ◽  
Author(s):  
S. Davidson ◽  
Y. Kuno ◽  
Y. Uesaka ◽  
M. Yamanaka
Keyword(s):  

Author(s):  
Mario Spagnuolo ◽  
Antonio M. Cazzani

AbstractIn this work, an extension of the strain energy for fibrous metamaterials composed of two families of parallel fibers lying on parallel planes and joined by connective elements is proposed. The suggested extension concerns the possibility that the constituent fibers come into contact and eventually scroll one with respect to the other with consequent dissipation due to friction. The fibers interact with each other in at least three different ways: indirectly, through microstructural connections that could allow a relative sliding between the two families of fibers; directly, as the fibers of a family can touch each other and can scroll introducing dissipation. From a mathematical point of view, these effects are modeled first by introducing two placement fields for the two fiber families and adding a coupling term to the strain energy and secondly by adding two other terms that take into account the interdistance between the parallel fibers and the Rayleigh dissipation potential (to account for friction).


Soft Matter ◽  
2021 ◽  
Author(s):  
Andrea Montessori ◽  
Adriano Tiribocchi ◽  
Marco Lauricella ◽  
Fabio Bonaccorso ◽  
Sauro Succi

A recently proposed mesoscale approach for the simulation of multicomponent flows with near-contact interactions is employed to investigate the early stage formation and clustering statistics of soft flowing crystals in microfluidic channels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


Author(s):  
Masamitsu Mori ◽  
Yudai Suwa ◽  
Ken’ichiro Nakazato ◽  
Kohsuke Sumiyoshi ◽  
Masayuki Harada ◽  
...  

Abstract Massive stars can explode as supernovae at the end of their life cycle, releasing neutrinos whose total energy reaches 1053erg. Moreover, neutrinos play key roles in supernovae, heating and reviving the shock wave as well as cooling the resulting proto-neutron star. Therefore, neutrino detectors are waiting to observe the next galactic supernova and several theoretical simulations of supernova neutrinos are underway. While these simulation concentrate mainly on only the first one second after the supernova bounce, the only observation of a supernova with neutrinos, SN 1987A, revealed that neutrino emission lasts for more than 10 seconds. For this reason, long-time simulation and analysis tools are needed to compare theories with the next observation. Our study is to develop an integrated supernova analysis framework to prepare an analysis pipeline for treating galactic supernovae observations in the near future. This framework deals with the core-collapse, bounce and proto-neutron star cooling processes, as well as with neutrino detection on earth in a consistent manner. We have developed a new long-time supernova simulation in one dimension that explodes successfully and computes the neutrino emission for up to 20 seconds. Using this model we estimate the resulting neutrino signal in the Super-Kamiokande detector to be about 1,800 events for an explosion at 10 kpc and discuss its implications in this paper. We compare this result with the SN 1987A observation to test its reliability.


2020 ◽  
Vol 101 (9) ◽  
Author(s):  
E. Ydrefors ◽  
J. H. Alvarenga Nogueira ◽  
V. A. Karmanov ◽  
T. Frederico

1992 ◽  
Vol 45 (10) ◽  
pp. R3312-R3315 ◽  
Author(s):  
K. S. Babu ◽  
Rabindra N. Mohapatra ◽  
I. Z. Rothstein

Sign in / Sign up

Export Citation Format

Share Document