scholarly journals General relativistic simulations of black-hole–neutron-star mergers: Effects of black-hole spin

2009 ◽  
Vol 79 (4) ◽  
Author(s):  
Zachariah B. Etienne ◽  
Yuk Tung Liu ◽  
Stuart L. Shapiro ◽  
Thomas W. Baumgarte
2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


2012 ◽  
Vol 85 (6) ◽  
Author(s):  
Zachariah B. Etienne ◽  
Yuk Tung Liu ◽  
Vasileios Paschalidis ◽  
Stuart L. Shapiro

2015 ◽  
Vol 92 (2) ◽  
Author(s):  
Kyohei Kawaguchi ◽  
Koutarou Kyutoku ◽  
Hiroyuki Nakano ◽  
Hirotada Okawa ◽  
Masaru Shibata ◽  
...  

2011 ◽  
Vol 83 (2) ◽  
Author(s):  
Francois Foucart ◽  
Matthew D. Duez ◽  
Lawrence E. Kidder ◽  
Saul A. Teukolsky

2014 ◽  
Vol 446 (1) ◽  
pp. 750-758 ◽  
Author(s):  
Rodrigo Fernández ◽  
Daniel Kasen ◽  
Brian D. Metzger ◽  
Eliot Quataert

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Koutarou Kyutoku ◽  
Masaru Shibata ◽  
Keisuke Taniguchi

AbstractWe review the current status of general relativistic studies for coalescences of black hole–neutron star binaries. First, high-precision computations of black hole–neutron star binaries in quasiequilibrium circular orbits are summarized, focusing on the quasiequilibrium sequences and the mass-shedding limit. Next, the current status of numerical-relativity simulations for the merger of black hole–neutron star binaries is described. We summarize our understanding for the merger process, tidal disruption and its criterion, properties of the merger remnant and ejected material, gravitational waveforms, and gravitational-wave spectra. We also discuss expected electromagnetic counterparts to black hole–neutron star coalescences.


Sign in / Sign up

Export Citation Format

Share Document