spin orientation
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 36)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
pp. 2106592
Author(s):  
Yuxuan Peng ◽  
Zhongchong Lin ◽  
Guang Tian ◽  
Jie Yang ◽  
Peijie Zhang ◽  
...  

2021 ◽  
Vol 104 (13) ◽  
Author(s):  
M. Ślęzak ◽  
H. Nayyef ◽  
P. Dróżdż ◽  
W. Janus ◽  
A. Kozioł-Rachwał ◽  
...  

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Shixiong Zhang ◽  
Ning Tang ◽  
Xiaoyue Zhang ◽  
Xingchen Liu ◽  
Hongming Guan ◽  
...  

2021 ◽  
Author(s):  
Kengo Oka ◽  
Yusuke Nambu ◽  
Masayuki Ochi ◽  
Naoaki Hayashi ◽  
Yoshihiro Kusano ◽  
...  

Abstract Control of spin alignment in magnetic materials is crucial for developing switching devices. In molecular magnets, magnetic anisotropy can be rationally controlled by varying their ligands that allow tuning of ligand field splitting energy. However, the inherent weak magnetic interaction between spins or spin-cluster results in spin reorientation (SR) occurring only at low temperatures. Here, we show that layered perovskite oxyfluoride Pb3Fe2O5F2 exhibits a SR transition at 380 K, with the magnetic moments changing from perpendicular to parallel to the c-axis. It is found that the SR is caused by a ferroelectric-like phase transition, where the magnetic HOMO-LUMO interaction changes upon the structural transition due to the concerted effect of the heteroleptic FeO5F coordination and the steric effect of Pb. This finding indicates that the design of spin orientation by local coordination environment, which is common in molecular magnets, can be extended to extended oxides by introducing different anions.


2021 ◽  
pp. 2150215
Author(s):  
G. P. Zhang ◽  
Y. H. Bai ◽  
Thomas F. George

Laser-induced ultrafast demagnetization has puzzled researchers around the world for over two decades. Intrinsic complexity in electronic, magnetic and phononic subsystems is difficult to understand microscopically. So far, it is not possible to explain demagnetization using a single mechanism, which suggests a crucial piece of information still missing. In this paper, we return to a fundamental aspect of physics: spin and its change within each band in the entire Brillouin zone. We employ face-centered cubic (fcc) Ni as an example and use an extremely dense k mesh to map out spin changes for every band close to the Fermi level along all the high symmetry lines. To our surprise, spin angular momentum at some special k points abruptly changes from [Formula: see text] to [Formula: see text] simply by moving from one crystal momentum point to the next. This explains why intraband transitions, which the spin superdiffusion model is based upon, can induce a sharp spin moment reduction, and why electric current can change spin orientation in spintronics. These special k points, which are called spin Berry points [M. V. Berry, Proc. R. Soc. Lond. A 393 (1984) 45], are not random and appear when several bands are close to each other, so the Berry potential of spin majority states is different from that of spin minority states. Although within a single band, spin Berry points jump, when we group several neighboring bands together, they form distinctive smooth spin Berry lines. It is the band structure that disrupts those lines. Spin Berry points are crucial to laser-induced ultrafast demagnetization and spintronics.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sichen Duan ◽  
Yinong Yin ◽  
Guo-Qiang Liu ◽  
Na Man ◽  
Jianfeng Cai ◽  
...  

NaxCoO2 was known 20 years ago as a unique example in which spin entropy dominates the thermoelectric behavior. Hitherto, however, little has been learned about how to manipulate the spin degree of freedom in thermoelectrics. Here, we report the enhanced thermoelectric performance of GeMnTe2 by controlling the spin’s thermodynamic entropy. The anomalously large thermopower of GeMnTe2 is demonstrated to originate from the disordering of spin orientation under finite temperature. Based on the careful analysis of Heisenberg model, it is indicated that the spin-system entropy can be tuned by modifying the hybridization between Te-p and Mn-d orbitals. As a consequent strategy, Se doping enlarges the thermopower effectively, while neither carrier concentration nor band gap is affected. The measurement of magnetic susceptibility provides a solid evidence for the inherent relationship between the spin’s thermodynamic entropy and thermopower. By further introducing Bi doing, the maximum ZT in Ge0.94Bi0.06MnTe1.94Se0.06 reaches 1.4 at 840 K, which is 45% higher than the previous report of Bi-doped GeMnTe2. This work reveals the high thermoelectric performance of GeMnTe2 and also provides an insightful understanding of the spin degree of freedom in thermoelectrics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swarup Deb ◽  
Subhabrata Dhar

AbstractA two-dimensional electron gas (2DEG), which has recently been shown to develop in the central vertical plane of a wedge-shaped c-oriented GaN nanowall due to spontaneous polarization effect, offers a unique scenario, where the symmetry between the conduction and valence band is preserved over the entire confining potential. This results in the suppression of Rashba coupling even when the shape of the wedge is not symmetric. Here, for such a 2DEG channel, relaxation time for different spin projections is calculated as a function of donor concentration and gate bias. Our study reveals a strong dependence of the relaxation rate on the spin-orientation and density of carriers in the channel. Most interestingly, relaxation of spin oriented along the direction of confinement has been found to be completely switched off. Upon applying a suitable bias at the gate, the process can be switched on again. Exploiting this fascinating effect, an electrically driven spin-transistor has been proposed.


Sign in / Sign up

Export Citation Format

Share Document