scholarly journals Low-mass dark-matter hint from CDMS II, Higgs boson at the LHC, and darkon models

2013 ◽  
Vol 88 (1) ◽  
Author(s):  
Xiao-Gang He ◽  
Jusak Tandean
Keyword(s):  
2019 ◽  
Vol 122 (1) ◽  
Author(s):  
I. S. Seong ◽  
S. E. Vahsen ◽  
I. Adachi ◽  
H. Aihara ◽  
S. Al Said ◽  
...  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Elias Bernreuther ◽  
Juliana Carrasco Mejia ◽  
Felix Kahlhoefer ◽  
Michael Krämer ◽  
Patrick Tunney

Abstract Many models of dark matter predict long-lived particles (LLPs) that can give rise to striking signatures at the LHC. Existing searches for displaced vertices are however tailored towards heavy LLPs. In this work we show that this bias severely affects their sensitivity to LLPs with masses at the GeV scale. To illustrate this point we consider two dark sector models with light LLPs that decay hadronically: a strongly-interacting dark sector with long-lived exotic mesons, and a Higgsed dark sector with a long-lived dark Higgs boson. We study the sensitivity of an existing ATLAS search for displaced vertices and missing energy in these two models and find that current track and vertex cuts result in very low efficiency for light LLPs. To close this gap in the current search programme we suggest two possible modifications of the vertex reconstruction and the analysis cuts. We calculate projected exclusion limits for these modifications and show that they greatly enhance the sensitivity to LLPs with low mass or short decay lengths.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

2021 ◽  
Vol 504 (1) ◽  
pp. 648-653
Author(s):  
Nilanjan Banik ◽  
Jo Bovy

ABSTRACT Stellar tidal streams are sensitive tracers of the properties of the gravitational potential in which they orbit and detailed observations of their density structure can be used to place stringent constraints on fluctuations in the potential caused by, e.g. the expected populations of dark matter subhaloes in the standard cold dark matter (CDM) paradigm. Simulations of the evolution of stellar streams in live N-body haloes without low-mass dark matter subhaloes, however, indicate that streams exhibit significant perturbations on small scales even in the absence of substructure. Here, we demonstrate, using high-resolution N-body simulations combined with sophisticated semi-analytical and simple analytical models, that the mass resolutions of 104–$10^5\, \rm {M}_{\odot }$ commonly used to perform such simulations cause spurious stream density variations with a similar magnitude on large scales as those expected from a CDM-like subhalo population and an order of magnitude larger on small, yet observable, scales. We estimate that mass resolutions of ${\approx}100\, \rm {M}_{\odot }$ (${\approx}1\, \rm {M}_{\odot }$) are necessary for spurious, numerical density variations to be well below the CDM subhalo expectation on large (small) scales. That streams are sensitive to a simulation’s particle mass down to such small masses indicates that streams are sensitive to dark matter clustering down to these low masses if a significant fraction of the dark matter is clustered or concentrated in this way, for example, in MACHO models with masses of 10–$100\, \rm {M}_{\odot }$.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
D. S. Akerib ◽  
S. Alsum ◽  
H. M. Araújo ◽  
X. Bai ◽  
J. Balajthy ◽  
...  

2020 ◽  
Vol 494 (4) ◽  
pp. 4706-4712 ◽  
Author(s):  
Andrew Robertson ◽  
Richard Massey ◽  
Vincent Eke

ABSTRACT We assess a claim that observed galaxy clusters with mass ${\sim}10^{14} \mathrm{\, M_\odot }$ are more centrally concentrated than predicted in lambda cold dark matter (ΛCDM). We generate mock strong gravitational lensing observations, taking the lenses from a cosmological hydrodynamical simulation, and analyse them in the same way as the real Universe. The observed and simulated lensing arcs are consistent with one another, with three main effects responsible for the previously claimed inconsistency. First, galaxy clusters containing baryonic matter have higher central densities than their counterparts simulated with only dark matter. Secondly, a sample of clusters selected because of the presence of pronounced gravitational lensing arcs preferentially finds centrally concentrated clusters with large Einstein radii. Thirdly, lensed arcs are usually straighter than critical curves, and the chosen image analysis method (fitting circles through the arcs) overestimates the Einstein radii. After accounting for these three effects, ΛCDM predicts that galaxy clusters should produce giant lensing arcs that match those in the observed Universe.


Sign in / Sign up

Export Citation Format

Share Document