baryonic matter
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 66)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
pp. 1-13
Author(s):  
Raymond T. Pierrehumbert

‘Beginnings’ discusses the general processes that form planetary systems, particularly the Solar System. Most of the Universe is made of a mysterious substance called ‘dark matter’, and an even more mysterious substance called ‘dark energy’. After the birth of the Universe in the Big Bang, the tiny bits of stardust which have accumulated contain the heavier elements (baryonic matter) that make it possible to form beings like ourselves, and the planets on which we live. We mustn't forget the importance of the formation of protostars, as well as gas and ice giant planets, the evolution of the proto-Sun, and the formation of inner rocky planets.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1888
Author(s):  
Yong-Liang Ma ◽  
Mannque Rho

We review a new development on the possible direct connection between the topological structure of the Nf=1 baryon as a FQH droplet and that of the Nf≥2 baryons (such as nucleons and hyperons) as skyrmions. This development suggests a possible “domain-wall (DW)” structure of compressed baryonic matter at high density expected to be found in the core of massive compact stars. Our theoretical framework is anchored on an effective nuclear effective field theory that incorporates two symmetries either hidden in the vacuum in QCD or emergent from strong nuclear correlations. It presents a basically different, hitherto undiscovered structure of nuclear matter at low as well as high densities. Hidden “genuine dilaton (GD)” symmetry and hidden local symmetry (HLS) gauge-equivalent at low density to nonlinear sigma model capturing chiral symmetry, put together in nuclear effective field theory, are seen to play an increasingly important role in providing hadron–quark duality in baryonic matter. It is argued that the FQH droplets could actually figure essentially in the properties of the vector mesons endowed with HLS near chiral restoration. This strongly motivates incorporating both symmetries in formulating “first-principles” approaches to nuclear dynamics encompassing from the nuclear matter density to the highest density stable in the Universe.


2021 ◽  
Vol 66 (9) ◽  
pp. 739
Author(s):  
S.L. Parnovsky

The tensions concerning the values of Hubble constant obtained from the early and the late Universe data pose a significant challenge to modern cosmology. Possible modifications of the flat homogeneous isotropic cosmological ΛCDM model are considered, in which the Universe contains the dark energy, cold baryonic matter, and dark matter. They are based on general relativity and satisfy two requirements: (1) the value of the Hubble constant calculated from the value of the Hubble parameter at the recombination by formulas of the flat ΛCDM model, should be equal to 92% of the one based on low-redshift observations; (2) deviations from the ΛCDM model should not lead to effects that contradict astronomical observations and estimations obtained thereof. The analysis showed that there are few opportunities for the choice. Either we should consider DM with negative pressure −pdmc2 ≪ pdm < 0, which weakly affects the evolution of the Universe and the observed manifestations of DM, or we should admit the mechanism of generation of new matter, for example, by the dark energy decay.


Author(s):  
Kiren O.V. ◽  
Arun Kenath ◽  
Sivaram C ◽  
Paul K.T.

In our earlier work we had discussed the possibility of primordial planets composed entirely of dark matter (DM) to be the main reason for not detecting DM particles. It has been suggested that primordial planets could have formed in the early Universe and the missing baryons in the Universe could be explained by primordial free-floating planets of solid hydrogen. Many such planets were recently discovered around the old and metal poor stars and such planets could have formed at early epochs. Another possibility for missing baryons in the Universe could be that these baryons are admixed with DM particles inside the primordial planets. Here we discuss the possibility of admixture of baryons to the DM primordial planets discussed in earlier work. We consider gravitationally bound DM objects with the DM particles constituting them varying in mass from 20 &ndash; 100GeV. Different fractions of DM particles mixed with baryonic matter in forming the primordial planets are discussed. For the different mass range of DM particles forming DM planets, we have estimated the radius and density of these planets with different fractions of DM and baryonic particles. It is found that for heavier mass DM particles with the admixture of certain fractions of baryonic particles, the mass of the planet increases and can reach or even substantially exceed Jupiter-mass.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1480
Author(s):  
Egle Tomasi-Gustafsson ◽  
Andrea Bianconi ◽  
Simone Pacetti

The internal structure of composite particles is conveniently described in terms of form factors (FFs)—these are experimentally accessible in annihilation and scattering of elementary reactions, and are theoretically calculable by all models that describe the properties of particles. FFs depend only on one kinematical variable, q2. This is the four-momentum transferred by the virtual photon that carries the interaction. Important developments in accelerator and detector techniques have brought impressive advances, both by extending the kinematical region and by reaching a higher precision. A critical review on the underlying methods and findings in polarized and unpolarized experiments is presented. The unique role played by polarization in determining the ratio of electric to magnetic form factors in the space-like region, and the extraction of individual form factors in the whole kinematical region, are described. Recent results at electron accelerators and electron–positron colliders confirm the existence of periodical structure in the annihilation cross section. We suggest a global framework which describes the dynamical structure of charge distribution in baryons, in order to build a coherent view of the creation and annihilation of baryonic matter.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Nicolas Kovensky ◽  
Andreas Schmitt

We study baryonic matter with isospin asymmetry, including fully dynamically its interplay with pion condensation. To this end, we employ the holographic Witten-Sakai-Sugimoto model and the so-called homogeneous ansatz for the gauge fields in the bulk to describe baryonic matter. Within the confined geometry and restricting ourselves to the chiral limit, we map out the phase structure in the presence of baryon and isospin chemical potentials, showing that for sufficiently large chemical potentials condensed pions and isospin-asymmetric baryonic matter coexist. We also present first results of the same approach in the deconfined geometry and demonstrate that this case, albeit technically more involved, is better suited for comparisons with and predictions for real-world QCD. Our study lays the ground for future improved holographic studies aiming towards a realistic description of charge neutral, beta-equilibrated matter in compact stars, and also for more refined comparisons with lattice studies at nonzero isospin chemical potential.


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg&rsquo;s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (&ldquo;darks&rdquo;) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect of galaxies to the extent that a numerical value of Milgrom&rsquo;s acceleration constant can be assigned by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy at the cosmological level. The result is an interpretation of gravity at the quantum level in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model.


Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 354-360
Author(s):  
Oleg Golosov ◽  
Ilya Selyuzhenkov ◽  
Evgeny Kashirin

The Compressed Baryonic Matter experiment (CBM) at FAIR aims to study the area of the QCD phase diagram at high net baryon densities and moderate temperatures with collisions of heavy ions at sNN=2.8–4.9 GeV. The anisotropic transverse flow is one of the most important observable phenomena in a study of the properties of matter created in such collisions. Flow measurements require the knowledge of the collision symmetry plane, which can be determined from the deflection of the collision spectators in the plane transverse to the direction of the moving ions. The CBM performance for projectile spectator symmetry plane estimation is studied with GEANT4 Monte Carlo simulations using collisions of gold ions with beam momentum of 12A GeV/c generated with the DCM-QGSM-SMM model. Different data-driven methods to extract the correction factor in flow analysis for the resolution of the spectator symmetry plane estimated with the CBM Projectile Spectator Detector are investigated.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Len Brandes ◽  
Norbert Kaiser ◽  
Wolfram Weise

AbstractThe phase structure of baryonic matter is investigated with focus on the role of fluctuations beyond the mean-field approximation. The prototype test case studied is the chiral nucleon-meson model, with added comments on the chiral quark-meson model. Applications to nuclear matter include the liquid-gas phase transition. Extensions to high baryon densities are performed for both nuclear and neutron matter. The role of vacuum fluctuations is systematically explored. It is pointed out that such fluctuations tend to stabilize the hadronic phase characterized by spontaneously broken chiral symmetry, shifting the chiral restoration transition to very high densities. This stabilization effect is shown to be further enhanced by additional dynamical fluctuations treated with functional renormalisation group methods.


Sign in / Sign up

Export Citation Format

Share Document