hydrodynamical simulation
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 53)

H-INDEX

16
(FIVE YEARS 7)

2021 ◽  
Vol 920 (1) ◽  
pp. 2
Author(s):  
Weishan Zhu ◽  
Fupeng Zhang ◽  
Long-Long Feng

Author(s):  
Boryana Hadzhiyska ◽  
Sonya Liu ◽  
Rachel S Somerville ◽  
Austen Gabrielpillai ◽  
Sownak Bose ◽  
...  

Abstract In this work, we compare large scale structure observables for stellar mass selected samples at z = 0, as predicted by two galaxy models, the hydrodynamical simulation IllustrisTNG and the Santa-Cruz semi-analytic model (SC-SAM). Although both models have been independently calibrated to match observations, rather than each other, we find good agreement between the two models for two-point clustering and galaxy assembly bias signatures. The models also show a qualitatively similar response of occupancy and clustering to secondary halo paramaters other than mass, such as formation history and concentration, although with some quantitative differences. Thus, our results demonstrate that the galaxy-halo relationships in SC-SAM and TNG are quite similar to first order. However, we also find areas in which the models differ. For example, we note a strong correlation between halo gas content and environment in TNG, which is lacking in the SC-SAM, as well as differences in the occupancy predictions for low-mass haloes. Moreover, we show that higher-order statistics, such as cumulants of the density field, help to accurately describe the galaxy distribution and discriminate between models that show degenerate behaviour for two-point statistics. Our results suggest that SAMs are a promising cost-effective and intuitive method for generating mock catalogues for next generation cosmological surveys.


2021 ◽  
Vol 508 (1) ◽  
pp. 175-189
Author(s):  
S Contreras ◽  
R E Angulo ◽  
M Zennaro

ABSTRACT We develop an extension of subhalo abundance matching (SHAM) capable of accurately reproducing the real and redshift-space clustering of galaxies in a state-of-the-art hydrodynamical simulation. Our method uses a low-resolution gravity-only simulation and it includes orphan and tidal disruption prescriptions for satellite galaxies, and a flexible amount of galaxy assembly bias. Furthermore, it includes recipes for star formation rate (SFR) based on the dark matter accretion rate. We test the accuracy of our model against catalogues of stellar-mass- and SFR-selected galaxies in the TNG300 hydrodynamic simulation. By fitting a small number of free parameters, our extended SHAM reproduces the projected correlation function and redshift-space multipoles for number densities $10^{-3} - 10^{-2}\, h^{3}{\rm Mpc}^{-3}$, at z = 1 and z = 0, and for scales r ∈ [0.3 − 20]h−1Mpc. Simultaneously, the SHAM results also retrieve the correct halo occupation distribution, the level of galaxy assembly bias, and higher order statistics present in the TNG300 galaxy catalogues. As an application, we show that our model simultaneously fits the projected correlation function of the SDSS in three disjoint stellar mass bins, with an accuracy similar to that of TNG300 galaxies. This SHAM extension can be used to get accurate clustering prediction even when using low and moderate-resolution simulations.


Author(s):  
Jun Hou ◽  
Cedric G Lacey ◽  
Carlos S Frenk

Abstract Gas cooling and accretion in haloes delivers mass and angular momentum on to galaxies. In this work, we investigate the accuracy of the modelling of this important process in several different semi-analytic (SA) galaxy formation models (galform , l-galaxies and morgana ) through comparisons with a hydrodynamical simulation performed with the moving-mesh code arepo . Both SA models and the simulation were run without any feedback or metal enrichment, in order to focus on the cooling and accretion process. All of the SA models considered here assume that gas cools from a spherical halo. We found that the assumption that the gas conserves its angular momentum when moving from the virial radius, rvir, to the central region of the halo, r ∼ 0.1rvir, is approximately consistent with the results from our simulation. We also found that, compared to the simulation, the morgana model tends to overestimate the mean specific angular momentum of cooled-down gas, the l-galaxies model also tends to overestimate this in low-redshift massive haloes, while the two older galform models tend to underestimate the angular momentum. In general, the predictions of the new galform cooling model developed by Hou et al. agree agree the best with the simulation.


Author(s):  
Jenny G Sorce ◽  
Yohan Dubois ◽  
Jérémy Blaizot ◽  
Sean L McGee ◽  
Gustavo Yepes ◽  
...  

Abstract At ∼16-17 Mpc from us, the Virgo cluster is a formidable source of information to study cluster formation and galaxy evolution in rich environments. Several observationally-driven formation scenarios arose within the past decade to explain the properties of galaxies that entered the cluster recently and the nature of the last significant merger that the cluster underwent. Confirming these scenarios requires extremely faithful numerical counterparts of the cluster. This paper presents the first Clone, Constrained LOcal and Nesting Environment, simulation of the Virgo cluster within a ∼15 Mpc radius sphere. This cosmological hydrodynamical simulation, with feedback from supernovae and active galactic nuclei, with a ∼3 × 107 M⊙ dark matter particle mass and a minimum cell size of 350 pc in the zoom region, reproduces Virgo within its large scale environment unlike a random cluster simulation. Overall the distribution of the simulated galaxy population matches the observed one including M87. The simulated cluster formation reveals exquisite agreements with observationally-driven scenarios: within the last Gigayear, about 300 small galaxies (M*>107 M⊙) entered the cluster, most of them within the last 500 Myr. The last significant merger event occurred about 2 Gigayears ago: a group with a tenth of the mass of today’s cluster entered from the far side as viewed from the Milky Way. This excellent numerical replica of Virgo will permit studying different galaxy type evolution (jellyfish, backsplash, etc.) as well as feedback phenomena in the cluster core via unbiased comparisons between simulated and observed galaxies and hot gas phase profiles to understand this great physics laboratory.


2021 ◽  
Vol 648 ◽  
pp. A116
Author(s):  
F. Combes ◽  
N. Gupta ◽  
S. Muller ◽  
S. Balashev ◽  
G. I. G. Józsa ◽  
...  

The Large Survey Project (LSP) “MeerKAT Absorption Line Survey” (MALS) is a blind H I 21 cm and OH 18 cm absorption line survey in the L- and UHF-bands, primarily designed to better determine the occurrence of atomic and molecular gas in the circumgalactic and intergalactic medium, and its redshift evolution. Here we present the first results using the UHF band obtained towards the strongly lensed radio source PKS 1830−211, revealing the detection of absorption produced by the lensing galaxy. With merely 90 min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known H I 21 cm and OH 18 cm main lines at z = 0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, in each 6 km s−1 wide channel). For the first time we report the detection of OH satellite lines at z = 0.89, which until now have not been detected at z > 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720 MHz lines are conjugate. The total OH 1720 MHz emission line luminosity is 6100 L⊙. This is the most luminous known 1720 MHz maser line and is also among the most luminous of the OH main line megamasers. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 years ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model derived from an N-body hydrodynamical simulation, with a morphology similar to its optical HST image. The resulting absorption lines depend mainly on the background continuum and the radial distribution of the gas surface density for each atomic and molecular species. We show that it is possible to reproduce the observations assuming a realistic spiral galaxy disk without invoking any central gas outflows. However, there are distinct and faint high-velocity features in the ALMA millimeter absorption spectra that most likely originate from high-velocity clouds or tidal features. These clouds may contribute to broaden the H I and OH spectra.


Author(s):  
Indranil Banik ◽  
Moritz Haslbauer ◽  
Marcel S Pawlowski ◽  
Benoit Famaey ◽  
Pavel Kroupa

Abstract The dwarf galaxy NGC 3109 is receding 105 km/s faster than expected in a ΛCDM timing argument analysis of the Local Group and external galaxy groups within 8 Mpc. If this few-body model accurately represents long-range interactions in ΛCDM, this high velocity suggests that NGC 3109 is a backsplash galaxy that was once within the virial radius of the Milky Way and was slingshot out of it. Here, we use the Illustris TNG300 cosmological hydrodynamical simulation and its merger tree to identify backsplash galaxies. We find that backsplashers as massive (≥4.0 × 1010M⊙) and distant (≥1.2 Mpc) as NGC 3109 are extremely rare, with none having also gained energy during the interaction with their previous host. This is likely due to dynamical friction. Since we identified 13225 host galaxies similar to the Milky Way or M31, we conclude that postulating NGC 3109 is a backsplash galaxy causes >3.96σ tension with the expected distribution of backsplashers in ΛCDM. We show that the dark matter only version of TNG300 yields much the same result, demonstrating its robustness to how the baryonic physics is modelled. If instead NGC 3109 is not a backsplasher, consistency with ΛCDM would require the timing argument analysis to be off by 105 km/s for this rather isolated dwarf, which we argue is unlikely. We discuss a possible alternative scenario for NGC 3109 and the Local Group satellite planes in the context of MOND, where the Milky Way and M31 had a past close flyby 7 − 10 Gyr ago.


2021 ◽  
Vol 908 (1) ◽  
pp. 11 ◽  
Author(s):  
Jaehyun Lee ◽  
Jihye Shin ◽  
Owain N. Snaith ◽  
Yonghwi Kim ◽  
C. Gareth Few ◽  
...  

2021 ◽  
Vol 502 (3) ◽  
pp. 3599-3617
Author(s):  
Boryana Hadzhiyska ◽  
Sandro Tacchella ◽  
Sownak Bose ◽  
Daniel J Eisenstein

ABSTRACT We employ the hydrodynamical simulation IllustrisTNG-300-1 to explore the halo occupation distribution (HOD) and environmental dependence of luminous star-forming emission-line galaxies (ELGs) at z ∼ 1. Such galaxies are key targets for current and upcoming cosmological surveys. We select model galaxies through cuts in colour–colour space allowing for a direct comparison with the Extended Baryon Oscillation Spectroscopic Survey and the Dark Energy Spectroscopic Instrument (DESI) surveys and then compare them with galaxies selected based on specific star formation rate (sSFR) and stellar mass. We demonstrate that the ELG populations are twice more likely to reside in lower density regions (sheets) compared with the mass-selected populations and twice less likely to occupy the densest regions of the cosmic web (knots). We also show that the colour-selected and sSFR-selected ELGs exhibit very similar occupation and clustering statistics, finding that the agreement is best for lower redshifts. In contrast with the mass-selected sample, the occupation of haloes by a central ELG peaks at ∼20 per cent. We furthermore explore the dependence of the HOD and the autocorrelation on environment, noticing that at fixed halo mass, galaxies in high-density regions cluster about 10 times more strongly than low-density ones. This result suggests that we should model carefully the galaxy–halo relation and implement assembly bias effects into our models (estimated at ∼4 per cent of the clustering of the DESI colour-selected sample at z = 0.8). Finally, we apply a simple mock recipe to recover the clustering on large scales (r ≳ 1 Mpc h−1) to within 1 per cent by augmenting the HOD model with an environment dependence, demonstrating the power of adopting flexible population models.


Sign in / Sign up

Export Citation Format

Share Document