Solution of radiation-reaction problem for the uniform magnetic field

1974 ◽  
Vol 9 (10) ◽  
pp. 2717-2722
Author(s):  
Neil D. Lubart
Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 658
Author(s):  
Carlos Barceló ◽  
Luis Garay ◽  
Jaime Redondo-Yuste

After more than a century of history, the radiation-reaction problem in classical electrodynamics still surprises and puzzles new generations of researchers. Here, we revise and explain some of the paradoxical issues that one faces when approaching the problem, mostly associated with regimes of uniform proper acceleration. The answers we provide can be found in the literature and are a synthesis of a large body of research. We only present them in a personal way that may help in their understanding. Besides, after the presentation of the standard answers, we motivate and present a twist to those ideas. The physics of emission of radiation by extended charges (charges with internal structure) might proceed in a surprising oscillating fashion. This hypothetical process could open up new research paths and a new take on the equivalence principle.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
E. Hirvijoki ◽  
J. Decker ◽  
A. J. Brizard ◽  
O. Embréus

In this paper, we present the guiding-centre transformation of the radiation–reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation–reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429–4438), where it was used to eliminate the fast gyromotion from the Fokker–Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation–reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.


Sign in / Sign up

Export Citation Format

Share Document