Publisher’s Note: Electroweak standard model with very special relativity [Phys. Rev. D91, 105007 (2015)]

2015 ◽  
Vol 91 (12) ◽  
Author(s):  
Jorge Alfaro ◽  
Pablo Gonzalez ◽  
Ricardo Avila
2015 ◽  
Vol 91 (10) ◽  
Author(s):  
Jorge Alfaro ◽  
Pablo González ◽  
Ricardo Ávila

Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Jorge Alfaro

In this paper, we want to study one loop corrections in Very Special Relativity Standard Model(VSRSM). In order to satisfy the Ward identities and the S i m ( 2 ) symmetry of the model, we have to specify the Feynman rules, including the infrared regulator. To do this, we adapt the Mandelstam–Leibbrandt (ML) prescription to incorporate external momentum-dependent null vectors. As an example, we use the new S i m ( 2 ) invariant dimensional regularization to compute one loop corrections to the effective action in the subsector of the VSRSM that describe the interaction of photons with charged leptons. New stringent bounds for the masses of ν e and ν μ are obtained.


2009 ◽  
Vol 79 (10) ◽  
Author(s):  
A. P. Kouretsis ◽  
M. Stathakopoulos ◽  
P. C. Stavrinos

2010 ◽  
Vol 19 (11) ◽  
pp. 2285-2292
Author(s):  
B. G. SIDHARTH

In the theory of the Dirac equation and in the standard model, the neutrino is massless. Both these theories use Lorentz invariance. In modern approaches however, spacetime is no longer smooth, and this modifies special relativity. We show how such a modification throws up the mass of the neutrino.


Universe ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 74 ◽  
Author(s):  
Georgios Minas ◽  
Emmanuel Saridakis ◽  
Panayiotis Stavrinos ◽  
Alkiviadis Triantafyllopoulos

We investigate the bounce realization in the framework of generalized modified gravities arising from Finsler and Finsler-like geometries. In particular, a richer intrinsic geometrical structure is reflected in the appearance of extra degrees of freedom in the Friedmann equations that can drive the bounce. We examine various Finsler and Finsler-like constructions. In the cases of general very special relativity, as well as of Finsler-like gravity on the tangent bundle, we show that a bounce cannot easily be obtained. However, in the Finsler–Randers space, induced scalar anisotropy can fulfil bounce conditions, and bouncing solutions are easily obtained. Finally, for the general class of theories that include a nonlinear connection, a new scalar field is induced, leading to a scalar–tensor structure that can easily drive a bounce. These features reveal the capabilities of Finsler and Finsler-like geometries.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Alesandro Ferreira dos Santos ◽  
Faqir C. Khanna

Abstract In this paper the differential cross section for Bhabha scattering in the very special relativity (VSR) framework is calculated. The main characteristic of the VSR is to modify the gauge invariance. This leads to different types of interactions appearing in a non-local form. In addition, using the Thermo Field Dynamics formalism, thermal corrections for the differential cross section of Bhabha scattering in VSR framework are obtained.


2014 ◽  
Vol 29 (26) ◽  
pp. 1450140
Author(s):  
Hassan Ganjitabar ◽  
Ali Shojai

Very Special Relativity (VSR), proposed by Cohen and Glashow, considers one of the subgroups of Poincaré group as the symmetry of spacetime. This paper investigates the transformations of electromagnetic fields under boosts of VSR, and by the aid of them studies the interaction energy between spin of an electron and external electromagnetic fields. Here, we argue that Thomas precession, one of the consequences of Special Relativity (SR), does not exist in HOM(2) avatar of VSR. The predictions of SR and VSR about the spin interaction energy in a certain case are compared, and despite the absence of Thomas precession in VSR, no noticeable departure is seen.


Sign in / Sign up

Export Citation Format

Share Document