noncommutative space
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 61 (6) ◽  
pp. 689-702
Author(s):  
Ilyas Haouam

In this paper, we address the energy eigenvalues of two-dimensional Dirac oscillator perturbed by a dynamical noncommutative space. We derived the relativistic Hamiltonian of Dirac oscillator in the dynamical noncommutative space, in which the space-space Heisenberg-like commutation relations and noncommutative parameter are position-dependent. Then, we used this Hamiltonian to calculate the first-order correction to the eigenvalues and eigenvectors, based on the language of creation and annihilation operators and using the perturbation theory. It is shown that the energy shift depends on the dynamical noncommutative parameter τ . Knowing that, with a set of two-dimensional Bopp-shift transformation, we mapped the noncommutative problem to the standard commutative one.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Angel Ballesteros ◽  
Giulia Gubitosi ◽  
Ivan Gutierrez-Sagredo ◽  
Flavio Mercati

Abstract A novel approach to study the properties of models with quantum-deformed relativistic symmetries relies on a noncommutative space of worldlines rather than the usual noncommutative spacetime. In this setting, spacetime can be reconstructed as the set of events, that are identified as the crossing of different worldlines. We lay down the basis for this construction for the κ-Poincaré model, analyzing the fuzzy properties of κ-deformed time-like worldlines and the resulting fuzziness of the reconstructed events.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Shoichi Kawamoto ◽  
Tsunehide Kuroki

Abstract Quantum field theory defined on a noncommutative space is a useful toy model of quantum gravity and is known to have several intriguing properties, such as nonlocality and UV/IR mixing. They suggest novel types of correlation among the degrees of freedom of different energy scales. In this paper, we investigate such correlations by the use of entanglement entropy in the momentum space. We explicitly evaluate the entanglement entropy of scalar field theory on a fuzzy sphere and find that it exhibits different behaviors from that on the usual continuous sphere. We argue that these differences would originate in different characteristics; non-planar contributions and matrix regularizations. It is also found that the mutual information between the low and the high momentum modes shows different scaling behaviors when the effect of a cutoff becomes important.


Author(s):  
Latévi Mohamed Lawson

Abstract More recently, we have proposed a set of noncommutative space that describes the quantum gravity at the Planck scale [J. Phys. A: Math. Theor. 53, 115303 (2020)]. The interesting significant result, we found is that, the generalized uncertainty principle induces a maximal measurable length of quantum gravity. This measurement revealed strong quantum gravitational effects at this scale and predicted a detection of gravity particles with low energies. In the present paper, to make evidence this prediction, we study in this space, the dynamics of a particle with position-dependent mass (PDM) trapped in an infinite square well. We show that by increasing the quantum gravitational effect, the PDM of the particle increases and induces deformations of the quantum energy levels. These deformations are more pronounced as one increases the quantum levels allowing, the particle to jump from one state to another with low energies and with high probability densities.


2021 ◽  
pp. 2100085
Author(s):  
G. Manolakos ◽  
P. Manousselis ◽  
G. Zoupanos

Author(s):  
Walter D. van Suijlekom ◽  
Jeroen Winkel

AbstractWe introduce and analyse a general notion of fundamental group for noncommutative spaces, described by differential graded algebras. For this we consider connections on finitely generated projective bimodules over differential graded algebras and show that the category of flat connections on such modules forms a Tannakian category. As such this category can be realised as the category of representations of an affine group scheme G, which in the classical case is (the pro-algebraic completion of) the usual fundamental group. This motivates us to define G to be the fundamental group of the noncommutative space under consideration. The needed assumptions on the differential graded algebra are rather mild and completely natural in the context of noncommutative differential geometry. We establish the appropriate functorial properties, homotopy and Morita invariance of this fundamental group. As an example we find that the fundamental group of the noncommutative torus can be described as the algebraic hull of the topological group $(\mathbb Z+\theta \mathbb Z)^{2}$ ( ℤ + 𝜃 ℤ ) 2 .


Author(s):  
Ilyas Haouam

In this paper, we address the energy eigenvalues of two-dimensional Dirac oscillator perturbed by dynamical noncommutative space. We derived the relativistic Hamiltonian of Dirac oscillator in dynamical noncommutative space ( τ -space), in which the space-space Heisenberg–like commutation relations and noncommutative parameter are position-dependent. Then used this Hamiltonian to calculate the first-order correction to the eigenvalues and eigenvectors, based on the second quantization and using the perturbation theory. It is shown that the energy shift depends on the dynamical noncommutative parameter τ . Knowing that with a set of two-dimensional Bopp-shift transformation, we mapped the noncommutative problem to the standard commutative one.


Sign in / Sign up

Export Citation Format

Share Document