scholarly journals Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory

2017 ◽  
Vol 96 (12) ◽  
Author(s):  
A. Aab ◽  
P. Abreu ◽  
M. Aglietta ◽  
I. Al Samarai ◽  
I. F. M. Albuquerque ◽  
...  
2019 ◽  
Vol 209 ◽  
pp. 01042 ◽  
Author(s):  
J. M. Carceller

With data on the depth of maximum Xmax collected during more than a decade of operation of the Pierre Auger Observatory, we report on the inferences on the mass composition of UHECRs in the energy range E = 1017.2 – 1019.6 eV and on the measurements of the proton-air cross section for energies up to 1018.5 eV. We also present the results on Xmax obtained using the information on the particle arrival times recorded by the SD stations allowing us to extend the Xmax measurements up to 1020 eV. The inferences on mass composition, in particular using the data of the SD, are subject to systematic uncertainties due to uncertainties in the description of hadronic interactions at ultra-high energies. We discuss this problem with respect to the properties of the muonic component of extensive air-showers as derived from the SD data.


2019 ◽  
Vol 208 ◽  
pp. 08003 ◽  
Author(s):  
Raul R. Prado

The hybrid design of the Pierre Auger Observatory allows for the measurement of a number of properties of extensive air showers initiated by ultra-high energy cosmic rays. By comparing these measurements to predictions from air shower simulations, it is possible to both infer the cosmic ray mass composition and test hadronic interactions beyond the energies reached by accelerators. In this paper, we will present a compilation of results of air shower measurements by the Pierre Auger Observatory which are sensitive to the properties of hadronic interactions and can be used to constrain the hadronic interaction models. The inconsistencies found between the interpretation of different observables with regard to primary composition and between their measurements and simulations show that none of the currently used hadronic interaction models can provide a proper description of air showers and, in particular, of the muon production.


Sign in / Sign up

Export Citation Format

Share Document