Optimal surface-tension isotropy in the Rothman-Keller color-gradient lattice Boltzmann method for multiphase flow

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Peter Mora ◽  
Gabriele Morra ◽  
David A. Yuen
2009 ◽  
Vol 228 (4) ◽  
pp. 1139-1156 ◽  
Author(s):  
G. Thömmes ◽  
J. Becker ◽  
M. Junk ◽  
A.K. Vaikuntam ◽  
D. Kehrwald ◽  
...  

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 483-491 ◽  
Author(s):  
Wen-Kai Ge ◽  
Gui Lu ◽  
Xin Xu ◽  
Xiao-Dong Wang

AbstractThe spreading and permeation of droplets on porous substrates is a fundamental process in a variety of applications, such as coating, dyeing, and printing. The spreading and permeating usually occur synchronously but play different roles in the practical applications. The mechanisms of the competition between spreading and permeation is significant but still unclear. A lattice Boltzmann method is used to study the spreading and permeation of droplets on hybrid-wettability porous substrates, with different wettability on the surface and the inside pores. The competition between the spreading and the permeation processes is studied in this work from the effects of the substrate and the fluid properties, including the substrate wettability, the porous parameters, as well as the fluid surface tension and viscosity. The results show that increasing the surfacewettability and the porosity contact angle both inhibit the spreading and the permeation processes. When the inside porosity contact angle is larger than 90° (hydrophobic), the permeation process does not occur. The droplets suspend on substrates with Cassie state. The droplets are more easily to permeate into substrates with a small inside porosity contact angle (hydrophilic), as well as large pore sizes. Otherwise, the droplets are more easily to spread on substrate surfaces with small surface contact angle (hydrophilic) and smaller pore sizes. The competition between droplet spreading and permeation is also related to the fluid properties. The permeation process is enhanced by increasing of surface tension, leading to a smaller droplet lifetime. The goals of this study are to provide methods to manipulate the spreading and permeation separately, which are of practical interest in many industrial applications.


2011 ◽  
Vol 45 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Stefan Donath ◽  
Klaus Mecke ◽  
Swapna Rabha ◽  
Vivek Buwa ◽  
Ulrich Rüde

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xin Xin ◽  
Bo Yang ◽  
Tianfu Xu ◽  
Yingli Xia ◽  
Si Li

As a clean energy source with ample reserves, natural gas hydrate is studied extensively. However, the existing hydrate production from hydrate deposits faces many challenges, especially the uncertain mechanism of complex multiphase seepage in the sediments. The relative permeability of hydrate-bearing sediments is key to evaluating gas and water production. To study such permeability, a set of pore-scale microsimulations were carried out using the Lattice Boltzmann Method. To account for the differences between hydrate saturation and hydrate pore habit, we performed a gas-water multiphase flow simulation that combines the fluids’ fundamental properties (density ratio, viscosity ratio, and wettability). Results show that the Lattice Boltzmann Method simulation is valid compared to the pore network simulation and analysis models. In gas and water multiphase flow systems, the viscous coupling effect permits water molecules to block gas flow severely due to viscosity differences. In hydrate-bearing sediments, as hydrate saturation increases, the water saturation S w between the continuous and discontinuous gas phase decreases from 0.45 to 0.30 while hydrate saturation increases from 0.2 to 0.6. Besides, the residual water and gas increased, and the capillary pressure increased. Moreover, the seepage of gas and water became more tedious, resulting in decreased relative permeability. Compared with different hydrate pore habits, pore-filling thins the pores, restricting the gas flow than the grain-coating. However, hydrate pore habit barely affects water relative permeability.


Sign in / Sign up

Export Citation Format

Share Document