Steady state plane wave propagation speed in excitable media

1997 ◽  
Vol 56 (2) ◽  
pp. 2061-2073 ◽  
Author(s):  
Yuri B. Chernyak
Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edgar V.M. Carrasco ◽  
Rejane C. Alves ◽  
Mônica A. Smits ◽  
Vinnicius D. Pizzol ◽  
Ana Lucia C. Oliveira ◽  
...  

Abstract The non-destructive wave propagation technique is used to estimate the wood’s modulus of elasticity. The propagation speed of ultrasonic waves is influenced by some factors, among them: the type of transducer used in the test, the form of coupling and the sensitivity of the transducers. The objective of the study was to evaluate the influence of the contact pressure of the transducers on the ultrasonic speed. Ninety-eight tests were carried out on specimens of the species Eucalyptus grandis, with dimensions of 120 × 120 × 50 mm. The calibration of the pressure exerted by the transducer was controlled by a pressure gauge using a previously calibrated load cell. The robust statistical analysis allowed to validate the experimental results and to obtain consistent conclusions. The results showed that the wave propagation speed is not influenced by the pressure exerted by the transducer.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Daniel Omondi Onyango ◽  
Robert Kinyua ◽  
Abel Nyakundi Mayaka

The shape of the modal duct of an acoustic wave propagating in a muffling system varies with the internal geometry. This shape can be either as a result of plane wave propagation or three-dimensional wave propagation. These shapes depict the distribution of acoustic pressure that may be used in the design or modification of mufflers to create resonance at cut-off frequencies and hence achieve noise attenuation or special effects on the output of the noise. This research compares the shapes of acoustic duct modes of two sets of four pitch configurations of a helicoid in a simple expansion chamber with and without a central tube. Models are generated using Autodesk Inventor modeling software and imported into ANSYS 18.2, where a fluid volume from the complex computer-aided-design (CAD) geometry is extracted for three-dimensional (3D) analysis. Mesh is generated to capture the details of the fluid cavity for frequency range between 0 and 2000Hz. After defining acoustic properties, acoustic boundary conditions and loads were defined at inlet and outlet ports before computation. Postprocessed acoustic results of the modal shapes and transmission loss (TL) characteristics of the two configurations were obtained and compared for geometries of the same helical pitch. It was established that whereas plane wave propagation in a simple expansion chamber (SEC) resulted in a clearly defined acoustic pressure pattern across the propagation path, the distribution in the configurations with and without the central tube depicted three-dimensional acoustic wave propagation characteristics, with patterns scattering or consolidating to regions of either very low or very high acoustic pressure differentials. A difference of about 80 decibels between the highest and lowest acoustic pressure levels was observed for the modal duct of the geometry with four turns and with a central tube. On the other hand, the shape of the TL curve shifts from a sinusoidal-shaped profile with well-defined peaks and valleys in definite multiples of π for the simple expansion chamber, while that of the other two configurations depended on the variation in wavelength that affects the location of occurrence of cut-on or cut-off frequency. The geometry with four turns and a central tube had a maximum value of TL of about 90 decibels at approximately 1900Hz.


2014 ◽  
Vol 21 (16) ◽  
pp. 3403-3416
Author(s):  
Rajneesh Kumar ◽  
Mandeep Kaur ◽  
SC Rajvanshi

2020 ◽  
Vol 128 (1) ◽  
pp. 98
Author(s):  
С.А. Двинин ◽  
Д.К. Солихов ◽  
Ш.С. Нурулхаков

The evolution of a perturbation from a local source for Mandel'shtam-Brillouin scattering in a plasma layer with unlimited length is calculated. Perturbation over time in this case can either leave the scattering region through one of the two boundaries, or propagate along the layer at a speed below sound wave propagation speed, with an exponential growth, or a fall in perturbation amplitude. In the particular case of strictly backward scattering (the scattering angle is π), this propagation velocity is zero. The paper calculates the threshold instability fields and the instability increments, taking into account both convective losses and collisional attenuation of waves. It is shown that the instability threshold for scattering at an arbitrary angle can be lower than for strictly backwards scattering and when the threshold is exceeded by the intensity of the pump wave; the scattering increment at an angle can also be higher than the increment for backscattering. When the threshold is greatly exceeded, the convective losses can be neglected, and the largest increment is observed for backward scattering.


Sign in / Sign up

Export Citation Format

Share Document