pressure wave
Recently Published Documents


TOTAL DOCUMENTS

1482
(FIVE YEARS 221)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Vol 2 (11(75)) ◽  
pp. 34-42
Author(s):  
V. Mel’nick ◽  
N. Gnateiko

The forced movement of the submarine under the action of an acoustic pressure wave at rectilinear and uniform movement of the device is analyzed. The analysis of the dynamics of translational movement of the hull under the action of an acoustic pressure wave in an ideal environment, which makes it possible to assess the physical properties of the environment and the elastic properties of the outer hull on the value of the maximum movement of the submarine. It is proved that if the total pressure pulse is limited, then the water particles will receive certain displacements and it can be expected that under these conditions the displacement of the submarine will be determined. The results of the analysis make it possible to conduct a comparative analysis of the translational movement of the submarine under the action of an acoustic pressure wave, taking into account the characteristics of the moving medium, more precisely, taking into account the viscosity of the real medium


2021 ◽  
Author(s):  
Matthew Grimes ◽  
Nico Van Rensburg ◽  
Stuart Mitchell

Abstract This paper presents on a non-invasive, IoT-based method for rapidly determining the presence and location of spontaneous leaks in pressurized lines transporting any type of product (e.g., oil, gas, water, etc.). Specific applications include long-distance transmission lines, gathering networks at well sites, and offshore production risers. The methodology combines proven negative pressure wave (NPW) sensing with advanced signal processing to minimize false positives and accurately identify the presence of small spontaneous leaks within seconds of their occurrence. In the case of long-distance transmission pipelines, the location of the leak can be localized to within 20-50 feet. The solution was commercialized in 2020 and has undergone extensive testing to verify its capabilities. It is currently in use by several operators, both onshore and offshore.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8156
Author(s):  
Dong Li ◽  
Shijie Dai ◽  
Tao Lin

Explosion resistance is one of the most important performances for all flameproof enclosures. Pressure piling requires the flameproof enclosures to withstand explosion pressure higher than the design pressure. In order to study the explosion parameters in a flameproof enclosure under pressure piling, two experimental setups were prepared based on the theoretical analysis of the mechanism of pressure piling. One setup simulated the condition that the interior of a flameproof box is isolated by a baffle with a small hole. Another setup simulated the condition that a large number of electrical components were installed inside an explosion-proof box. The experimental result showed that the explosion pressure increased significantly in a very short time under pressure piling. When an explosion occurred in a cavity, the pressure wave of the explosion propagated faster than the flame propagation, and the pressure wave was transmitted to another cavity through a gas channel between the two cavities. This resulted in the pre-pressurization of the combustible gas in another cavity. It was observed that the ignition time in the cavity with an ignition source, is the key factor for pressure piling.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012008
Author(s):  
B Szturomski ◽  
R Kiciński

Abstract The study was based on the analysis of stamina of steel flat bottom section of transport warships, burdened by the spherical pressure wave from the non-contact explosion of TNT at a distance of 20 m under the keel. This study aims to determine the TNT mass required to break the hull. The task was solved by finite element method (FEM) explicite using CAE program [1], in which the hull’s bottom was modelled as thin shell space. The hull’s burden with pressure wave was modelled as a pressure impulse specified by the formula introduced by T.L. Geers, K.S. Hunter and R.S. Price [2]. To describe the material properties, considering high-speed strain, the Johnson-Cook model was used [3]. Therefore, the main goal of the hereby paper is to present how to correctly model the impact of large, concentrated masses of the ship’s equipment on its hull. The study presents the results of the calculated stress and strain states of the analysed section of the construction of the hull.


2021 ◽  
Vol 70 (11) ◽  
pp. 810-815
Author(s):  
Kohei TATEYAMA ◽  
Yuya MITANI ◽  
Keiko WATANABE

Author(s):  
Aleksandra Zienkiewicz ◽  
Michelle Favre ◽  
Hany Ferdinando ◽  
Stephanie Iring ◽  
Jorge Serrador ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document