Flow reversals in low-Prandtl-number Rayleigh-Bénard convection controlled by horizontal circulations

2015 ◽  
Vol 92 (2) ◽  
Author(s):  
Takatoshi Yanagisawa ◽  
Yozo Hamano ◽  
Ataru Sakuraba
2016 ◽  
Vol 798 ◽  
pp. 628-642 ◽  
Author(s):  
Shu-Ning Xia ◽  
Zhen-Hua Wan ◽  
Shuang Liu ◽  
Qi Wang ◽  
De-Jun Sun

Flow reversals in two-dimensional Rayleigh–Bénard convection led by non-Oberbeck–Boussinesq (NOB) effects due to large temperature differences are studied by direct numerical simulation. Perfect gas is chosen as the working fluid and the Prandtl number is 0.71 for the reference state. If NOB effects are included, the flow pattern $P_{11}$ with only one dominant roll often becomes unstable by the growth of the cold corner roll, which sometimes results in cession-led flow reversals. By exploiting the vorticity transport equation, it is found that the asymmetries of buoyancy and viscous forces are responsible for the growth of the cold corner roll because both such asymmetries cause an imbalance between the corner rolls and the large-scale circulation (LSC). The buoyancy force near the cold wall increases and decreases near the hot wall originating from the temperature-dependent isobaric thermal expansion coefficient ${\it\alpha}=1/T$ if NOB effects are included. Moreover, the decreased dissipation due to lower viscosity is favourable for the growth of the cold corner roll, while the increased viscosity further suppresses the growth of the hot corner roll. Finally, it is found that the boundary layer near the cold wall plays an important role in the mass transport from LSC to corner rolls subject to mass conservation.


2015 ◽  
Vol 773 ◽  
pp. 395-417 ◽  
Author(s):  
K. Petschel ◽  
S. Stellmach ◽  
M. Wilczek ◽  
J. Lülff ◽  
U. Hansen

The kinetic energy balance in Rayleigh–Bénard convection is investigated by means of direct numerical simulations for the Prandtl number range $0.01\leqslant \mathit{Pr}\leqslant 150$ and for fixed Rayleigh number $\mathit{Ra}=5\times 10^{6}$. The kinetic energy balance is divided into a dissipation, a production and a flux term. We discuss the profiles of all the terms and find that the different contributions to the energy balance can be spatially separated into regions where kinetic energy is produced and where kinetic energy is dissipated. By analysing the Prandtl number dependence of the kinetic energy balance, we show that the height dependence of the mean viscous dissipation is closely related to the flux of kinetic energy. We show that the flux of kinetic energy can be divided into four additive contributions, each representing a different elementary physical process (advection, buoyancy, normal viscous stresses and viscous shear stresses). The behaviour of these individual flux contributions is found to be surprisingly rich and exhibits a pronounced Prandtl number dependence. Different flux contributions dominate the kinetic energy transport at different depths, such that a comprehensive discussion requires a decomposition of the domain into a considerable number of sublayers. On a less detailed level, our results reveal that advective kinetic energy fluxes play a key role in balancing the near-wall dissipation at low Prandtl number, whereas normal viscous stresses are particularly important at high Prandtl number. Finally, our work reveals that classical velocity boundary layers are deeply connected to the kinetic energy transport, but fail to correctly represent regions of enhanced viscous dissipation.


Sign in / Sign up

Export Citation Format

Share Document