scholarly journals Peak Locations and Relative Phase of Different Decay Modes of thea1Axial Vector Resonance in Diffractive Production

2015 ◽  
Vol 114 (19) ◽  
Author(s):  
Jean-Louis Basdevant ◽  
Edmond L. Berger
Author(s):  
Rob. W. Glaisher ◽  
A.E.C. Spargo

Images of <11> oriented crystals with diamond structure (i.e. C,Si,Ge) are dominated by white spot contrast which, depending on thickness and defocus, can correspond to either atom-pair columns or tunnel sites. Olsen and Spence have demonstrated a method for identifying the correspondence which involves the assumed structure of a stacking fault and the preservation of point-group symmetries by correctly aligned and stigmated images. For an intrinsic stacking fault, a two-fold axis lies on a row of atoms (not tunnels) and the contrast (black/white) of the atoms is that of the {111} fringe containing the two-fold axis. The breakdown of Friedel's law renders this technique unsuitable for the related, but non-centrosymmetric binary compound sphalerite materials (e.g. GaAs, InP, CdTe). Under dynamical scattering conditions, Bijvoet related reflections (e.g. (111)/(111)) rapidly acquire relative phase differences deviating markedly from thin-crystal (kinematic) values, which alter the apparent location of the symmetry elements needed to identify the defect.


1982 ◽  
Vol 25 (11) ◽  
pp. 2869-2886 ◽  
Author(s):  
K. G. Hayes ◽  
M. L. Perl ◽  
M. S. Alam ◽  
A. M. Boyarski ◽  
M. Breidenbach ◽  
...  

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yudai Ichikawa ◽  
Junko Yamagata-Sekihara ◽  
Jung Keun Ahn ◽  
Yuya Akazawa ◽  
Kanae Aoki ◽  
...  

Abstract We have measured, for the first time, the inclusive missing-mass spectrum of the $^{12}$C$(K^-, p)$ reaction at an incident kaon momentum of 1.8 GeV/$c$ at the J-PARC K1.8 beamline. We observed a prominent quasi-elastic peak ($K^-p \rightarrow K^-p$) in this spectrum. In the quasi-elastic peak region, the effect of secondary interaction is apparently observed as a peak shift, and the peak exhibits a tail in the bound region. We compared the spectrum with a theoretical calculation based on the Green’s function method by assuming different values of the parameters for the $\bar{K}$–nucleus optical potential. We found that the spectrum shape in the binding-energy region $-300 \, \text{MeV} &lt; B_{K} &lt; 40$ MeV is best reproduced with the potential depths $V_0 = -80$ MeV (real part) and $W_0 = -40$ MeV (imaginary part). On the other hand, we observed a significant event excess in the deeply bound region around $B_{K} \sim 100$ MeV, where the major decay channel of $K^- NN \to \pi\Sigma N$ is energetically closed, and the non-mesonic decay modes ($K^- NN \to \Lambda N$ and $\Sigma N$) should mainly contribute. The enhancement is fitted well by a Breit–Wigner function with a kaon-binding energy of 90 MeV and width 100 MeV. A possible interpretation is a deeply bound state of a $Y^{*}$-nucleus system.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Rinaldo Baldini Ferroli ◽  
Alessio Mangoni ◽  
Simone Pacetti ◽  
Kai Zhu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document