fold axis
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 51)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Author(s):  
John P. Craddock ◽  
David H. Malone ◽  
Alex Konstantinou ◽  
John Spruell ◽  
Ryan Porter

ABSTRACT We report the results of 167 calcite twinning strain analyses (131 limestones and 36 calcite veins, n = 7368 twin measurements)t from the Teton–Gros Ventre (west; n = 21), Wind River (n = 43), Beartooth (n = 32), Bighorn (n = 32), and Black Hills (east; n = 11) Laramide uplifts. Country rock limestones record only a layer-parallel shortening (LPS) strain fabric in many orientations across the region. Synorogenic veins record both vein-parallel shortening (VPS) and vein-normal shortening (VNS) fabrics in many orientations. Twinning strain overprints were not observed in the limestone or vein samples in the supracrustal sedimentary veneer (i.e., drape folds), thereby suggesting that the deformation and uplift of Archean crystalline rocks that form Laramide structures were dominated by offset on faults in the Archean crystalline basement and associated shortening in the midcrust. The twinning strains in the pre-Sevier Jurassic Sundance Formation, in the frontal Prospect thrust of the Sevier belt, and in the distal (eastern) foreland preserve an LPS oriented approximately E-W. This LPS fabric is rotated in unique orientations in Laramide uplifts, suggesting that all but the Bighorn Mountains were uplifted by oblique-slip faults. Detailed field and twinning strain studies of drape folds identified second-order complexities, including: layer-parallel slip through the fold axis (Clarks Fork anticline), attenuation of the sedimentary section and fold axis rotation (Rattlesnake Mountain), rotation of the fold axis and LPS fabric (Derby Dome), and vertical rotations of the LPS fabric about a horizontal axis with 35% attenuation of the sedimentary section (eastern Bighorns). Regional cross sections (E-W) across the Laramide province have an excess of sedimentary veneer rocks that balance with displacement on a detachment at 30 km depth and perhaps along the Moho discontinuity at 40 km depth. Crustal volumes in the Wyoming Province balance when deformation in the western hinterland is included.


2022 ◽  
Author(s):  
Guiqing Hu ◽  
Mark A Silveria ◽  
Michael S Chapman ◽  
Scott M Stagg

Recombinant forms of adeno-associated virus (rAAV) are vectors of choice in the development of treatments for a number of genetic dispositions. Greater understanding of AAV's molecular virology is needed to underpin needed improvements in efficiency and specificity. Recent advances have included identification of a near universal entry receptor, AAVR, and structures by cryo-electron microscopy (EM) single particle analysis (SPA) that revealed, at high resolution, only the domains of AAVR most tightly bound to AAV. Here, cryogenic electron tomography (cryo-ET) is applied to reveal the neighboring domains of the flexible receptor. For AAV5, where the PKD1 domain is bound strongly, PKD2 is seen in three configurations extending away from the virus. AAV2 binds tightly to the PKD2 domain at a distinct site, and cryo-ET now reveals four configurations of PKD1, all different from that seen in AAV5. The AAV2 receptor complex also shows unmodeled features on the inner surface that appear to be an equilibrium alternate configuration. Other AAV structures start near the 5-fold axis, but now β-strand A is the minor conformer and, for the major conformer, partially ordered N-termini near the 2-fold axis join the canonical capsid jellyroll fold at the βA-βB turn. The addition of cryo-ET is revealing unappreciated complexity that is likely relevant to viral entry and to the development of improved gene therapy vectors. IMPORTANCE: With 150 clinical trials for 30 diseases underway, AAV is a leading gene therapy vector. Immunotoxicity at high doses used to overcome inefficient transduction, has occasionally proven fatal and highlighted gaps in fundamental virology. AAV enters cells, interacting through distinct sites with different domains of the AAVR receptor, according to AAV clade. Single domains are resolved in structures by cryogenic electron microscopy. Here, the adjoining domains are revealed by cryo-electron tomography of AAV2 and AAV5 complexes. They are in flexible configurations interacting minimally with AAV, despite measurable dependence of AAV2 transduction on both domains.


2021 ◽  
pp. 1-17
Author(s):  
Marco Mercuri ◽  
Luca Smeraglia ◽  
Manuel Curzi ◽  
Stefano Tavani ◽  
Roberta Maffucci ◽  
...  

Abstract Bedding-perpendicular joints striking parallel (longitudinal) and perpendicular (transverse) to both the axis of the hosting anticline and the trend of the foredeep-belt system are widely recognized in fold-and-thrust belts. Their occurrence has been commonly attributed to folding-related processes, such as syn-folding outer-arc extension, although they can also be consistent with a pre-folding foredeep-related fracturing stage. Here we report the pre-folding fracture pattern affecting the Pietrasecca Anticline, in the central Apennines (Italy), resolved by a detailed field structural analysis. Field observations, scan-lines and interpretation of virtual outcrops were used to study the intensity, distribution and the orientations of fracture pattern along the anticline. The fracture pattern of the Pietrasecca Anticline consists of longitudinal and transverse joints, oriented approximately perpendicular to bedding, and of a pre-folding longitudinal pressure-solution cleavage set, which is oblique to bedding regardless of the bedding dip. Cross-cutting relationships show that joints predated the development of the pressure-solution cleavage. Furthermore, joint intensity does not relate to the structural position along the anticline. Taken together, these observations suggest that jointing occurred in a foredeep environment before the Pietrasecca Anticline growth. Our work further demonstrates that joints striking parallel and orthogonal to the main fold axis do not necessarily represent syn-folding deformation structures.


Author(s):  
Mohammad Moradi ◽  
Morteza Mozafari ◽  
Mohammad Javad Bolourchi ◽  
Alireza Aliyari ◽  
Nikolay A. Palshin ◽  
...  

The Garmsiri Project, including the 4.5 km long T5 Tunnel, is under construction in western Iran. The T5 tunnel passes through the NW-SE trending Emam Hasan Anticline (EHA), perpendicular to the fold axis. The fold is mainly composed of the marlstone and argillaceous limestone layers of Cretaceous to Miocene age, incorporating the Pabdeh-Gurpi Formation, karst limestone of the Asmari Formation, and marlstone and gypsum of the Gachsaran Formation. There was a risk of water entry into the tunnel since it was constructed below the regional groundwater table elevation. In addition the entry of hydrocarbons, in either liquid or vapour phase, to the tunnel was possible due to the presence of numerous active bitumen mines in the vicinity of the anticline. To predict the risk of water or hydrocarbon entry geological and hydrogeological analyses together with the Audio Magnetotelluric (AMT) method were applied. Based on the field works, resistivity and geological cross sections were provided along the tunnel path. Several boreholes were drilled along the tunnel route and watertable elevation, Rock Quality Designation (RQD) and permeability values were measured. To determine a broad range of features related to the anticline, 55 AMT stations were positioned along the tunnel route. Dimensionality analysis confirmed 2D dimensionality of the AMT transfer functions, which allowed to apply the 2D bimodal inversion using a non-linear conjugate gradient algorithm. Integration of the geological and hydrogeological data with the resistivity model resulted in a more detailed geological section along the tunnel, including watertable elevation and identification of highly conductive zones in which bitumen migrated. It was predicted that water entry would be observed through the Asmari Formation and also that elevated H2S concentrations would be encountered during drilling in the anomalous conductive zones. Monitoring results and field observations gained during the tunnel construction were compared by the predictions.


Author(s):  
R. M. Zakalyukin ◽  
E. A. Levkevich ◽  
A. V. Nikolaeva

Objectives. Pentafluorodistannates of alkali metals are promising materials for use as electrolytes in fluoride-ion batteries due to their electrophysical properties, such as high fluoride-ion conductivity. This work aims to synthesize crystals of alkali metals MeSn2F5 (Me = Na, K, Rb, Cs), carry out X-ray diffraction studies on them, and investigate the possibility of obtaining lithium fluorostannates.Methods. Supersaturated aqueous solutions were employed to synthesize the crystals. The X-ray diffraction (XRD) analysis was carried out.Results. Oversaturated solutions yield microcrystalline powders of sodium, potassium, rubidium, and cesium pentafluorodistannates. The presence of a single-phase was confirmed by XRD analysis of the powders corresponding to the MеSn2F5 (Mе = Na, K, Rb, Cs) composition. XRD data analysis and literature indicated that MеSn2F5 (Mе = K, Rb, Cs) have a fluorite-like structure, with the cations forming three-layer closest packing. The RbSn2F5 compound was discovered to be isostructural to KSn2F5. Based on this discovery, RbSn2F5 was reindexed to a hexagonal unit cell with parameters a = 7.40(3) Å, с = 10.12(6) Å (KSn2F5 P3, a = 7.29(3) Å, с = 9.86(2) Å). The CsSn2F5 compound was reindexed to a monoclinic unit cell (a = 10.03(4) Å, b = 5.92(7) Å, c = 11.96(9) Å, β = 107.4(5)°). A crystallochemical analysis of the pentafluorodistannates was carried out, and common structural motifs were discovered. The motifs are similar to lead tetrafluorostannate PbSnF4, the best fluoride-ion conductor. The effect of the pentafluorodistannates structures on the ionic conductivity is considered. The LiF–SnF2 system contains no compounds; the compositions were obtained by melting the original fluorides. Conclusions. MеSn2F5 (Mе = Na, K, Rb, Cs) were synthesized and investigated by XRD analysis. The structural characteristics of the RbSn2F5 and CsSn2F5 compounds have been redefined. The crystallochemical structure is analyzed in relation to the electrophysical properties of the alkali metal pentafluorodistannates. Pentafluorodistannates MеSn2F5 (Mе = K, Rb, Cs) have a fluorite-like structural motif with cubic parameters а = 5.694 Å (KSn2F5), а = 5.846 Å (RbSn2F5), а = 6.100 Å (CsSn2F5), with the cations forming three-layer closest packing. The cationic layers alternate like Me–Sn–Sn–Me (Mе = K, Rb, Cs). For KSn2F5 and RbSn2F5, they are normal to the three-fold axis and normal to the four-fold axis in the case of CsSn2F5.


2021 ◽  
Author(s):  
Ranita Ramesh ◽  
Sean M. Braet ◽  
Varun Venkatakrishnan ◽  
Palur Venkata Raghuvamsi ◽  
Jonathan Chua Wei Bao ◽  
...  

Viruses are metastable macromolecular assemblies containing a nucleic acid core packaged by capsid proteins that are primed to disassemble in host-specific environments leading to genome release and replication. The mechanism of how viruses sense environmental changes associated with host entry to prime them for disassembly is unknown. We have applied a combination of mass spectrometry, cryo-EM, and simulation-assisted structure refinement to Turnip crinkle virus (TCV), which serves as a model non-enveloped icosahedral virus (Triangulation number = 3, 180 copies/icosahedron). Our results reveal genomic RNA tightly binds a subset of viral coat proteins to form a stable RNA-capsid core which undergoes conformational switching in response to host-specific environmental changes. These changes include: i) Depletion of Ca 2+ which triggers viral particle expansion ii) Increase in osmolytes further disrupt interactions of outer coat proteins from the RNA-capsid core to promote complete viral disassembly. A cryo-EM structure of the expanded particle shows that RNA is asymmetrically extruded from a single 5-fold axis during disassembly. The genomic RNA:capsid protein interactions confer metastability to the TCV capsid and drive release of RNA from the disassembling virion within the plant host cell.


2021 ◽  
Author(s):  
Ning Cui ◽  
Feng Yang ◽  
Jun-Tao Zhang ◽  
Hui Sun ◽  
Yu Chen ◽  
...  

A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a non-covalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo three-fold axis combined with the complementarity in shape and electrostatic potential around the two-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O 2 generation, and CO 2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Wathiq Ghazi Abdulnaby ◽  
◽  
Maher Mandeel Mahdi ◽  
Rafed Abd Al-Muhamed ◽  
Nagham Adil Darweesh ◽  
...  

Bajalia Anticline is located about 60km northeast of central Amarah city in Al-Teeb area near Iraq-Iran border. Field and laboratory works were conducted to study topography, geomorphology, stratigraphy, and structural geology of Bajalia Anticline. The Anticline has a longitudinal shape with about 29km in length and 5-7km in width. Injana, Mukdadiya, and Bai Hassan formations are the three formations that were recognized in the study area. The geometrical structural analysis depicts that the Anticline is non-cylindrical, asymmetrical, close, sub-horizontal, steeply inclined, and linear fold. Most of the fractures in the Anticline are joints. These joints were classified based on the tectonics axes, which are a, b, and c, into ac, bc, and hol. A major reverse fault is located at the margin of the southwestern limb parallel to the fold axis with about 25km length. This fault is responsible on the vergence of the Anticline and overturned part of the southwestern limb. The Anticline was formed as a result of the collision between the Arabian and Iranian plates during the Late Tertiary. The maximum stress axis, which is caused by collision, is perpendicular to the hinge line. The geometrical and genetic classification indicates that the Anticline was formed by the high folding intensity and with a role of evaporites layers.


2021 ◽  
Vol 54 (2A) ◽  
pp. 49-59
Author(s):  
Alaa N. Hamdoon

Ain Sifni anticline is located in northern Iraq within High Folded Zone. It contains some tectonic deformations that need to study to determine the source and mechanism of these deformations concerning the geological setting of the study area. This study includes structural and morphotectonic interpretations for the Ain Sifni anticline, such as the visual & digital interpretation of satellite images and the Digital Elevation Model interpretation. These parameters are used to identify the morphogenic criteria and subsequently, to conclude a morphotectonic aspect of the deformations in the Ain Sifni anticline. Because of the regional tectonic evolution in this area, the structural and morphotectonic analysis of this anticline shows much evidence of morphological changes at the southeastern plunge area of the anticline within the Injana and Mukdadiya formations in comparison to the northwestern plunge area of the anticline. In addition, two recent water gaps have been recognized at the southeastern plunge area, one is confirmed and the other is proposed, and then a wind gap has been recognized in the middle of the anticline. A relation has been established between these morphotectonic features with the lateral propagation of the anticline towards the southeast, due to the regional tectonic deformation. A significant main fault has also been detected as a dextral strike-slip fault perpendicular to the fold axis of the anticline. This fault caused a difference in the vergency of the anticline and deformed the outcrops of formations in the study region.


Sign in / Sign up

Export Citation Format

Share Document