Numerical evidence for a first-order chiral phase transition in lattice QCD with two light flavors

1987 ◽  
Vol 58 (24) ◽  
pp. 2515-2518 ◽  
Author(s):  
M. Fukugita ◽  
S. Ohta ◽  
Y. Oyanagi ◽  
A. Ukawa
1987 ◽  
Vol 188 (3) ◽  
pp. 353-358 ◽  
Author(s):  
F. Karsch ◽  
J.B. Kogut ◽  
D.K. Sinclair ◽  
H.W. Wyld

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Niseem Magdy

Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM. The hadron resonance gas (HRG) model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Francesca Cuteri ◽  
Owe Philipsen ◽  
Alessandro Sciarra

Abstract The nature of the QCD chiral phase transition in the limit of vanishing quark masses has remained elusive for a long time, since it cannot be simulated directly on the lattice and is strongly cutoff-dependent. We report on a comprehensive ongoing study using unimproved staggered fermions with Nf ∈ [2, 8] mass-degenerate flavours on Nτ ∈ {4, 6, 8} lattices, in which we locate the chiral critical surface separating regions with first-order transitions from crossover regions in the bare parameter space of the lattice theory. Employing the fact that it terminates in a tricritical line, this surface can be extrapolated to the chiral limit using tricritical scaling with known exponents. Knowing the order of the transitions in the lattice parameter space, conclusions for approaching the continuum chiral limit in the proper order can be drawn. While a narrow first-order region cannot be ruled out, we find initial evidence consistent with a second-order chiral transition in all massless theories with Nf ≤ 6, and possibly up to the onset of the conformal window at 9 ≲ $$ {N}_{\mathrm{f}}^{\ast } $$ N f ∗ ≲ 12. A reanalysis of already published $$ \mathcal{O} $$ O (a)-improved Nf = 3 Wilson data on Nτ ∈ [4, 12] is also consistent with tricritical scaling, and the associated change from first to second-order on the way to the continuum chiral limit. We discuss a modified Columbia plot and a phase diagram for many-flavour QCD that reflect these possible features.


1996 ◽  
Vol 71 (2) ◽  
pp. 337-341 ◽  
Author(s):  
Y. Iwasaki ◽  
K. Kanaya ◽  
S. Sakai ◽  
T. Yoshié

1988 ◽  
Vol 37 (5) ◽  
pp. 1343-1346 ◽  
Author(s):  
R. V. Gavai ◽  
J. Potvin ◽  
S. Sanielevici

Sign in / Sign up

Export Citation Format

Share Document