thermal models
Recently Published Documents


TOTAL DOCUMENTS

630
(FIVE YEARS 101)

H-INDEX

44
(FIVE YEARS 4)

Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 503-523
Author(s):  
Danial Karimi ◽  
Hamidreza Behi ◽  
Mohsen Akbarzadeh ◽  
Sahar Khaleghi ◽  
Joeri Van Mierlo ◽  
...  

Lithium-ion capacitor technology (LiC) is well known for its higher power density compared to electric double-layer capacitors (EDLCs) and higher energy density compared to lithium-ion batteries (LiBs). However, the LiC technology is affected by a high heat generation problem in high-power applications when it is continuously being charged/discharged with high current rates. Such a problem is associated with safety and reliability issues that affect the lifetime of the cell. Therefore, for high-power applications, a robust thermal management system (TMS) is essential to control the temperature evolution of LiCs to ensure safe operation. In this regard, developing accurate electrical and thermal models is vital to design a proper TMS. This work presents a detailed 1D/3D electro-thermal model at module level employing MATLAB/SIMULINK® coupled to the COMSOL Multiphysics® software package. The effect of the inlet coolant flow rate, inlet coolant temperature, inlet and outlet positions, and the number of arcs are examined under the cycling profile of a continuous 150 A current rate without a rest period for 1400 s. The results prove that the optimal scenario for the LCTMS would be the inlet coolant flow rate of 500 mL/min, the inlet temperature of 30 °C, three inlets, three outlets, and three arcs in the coolant path. This scenario decreases the module’s maximum temperature (Tmax) and temperature difference by 11.5% and 79.1%, respectively. Moreover, the electro-thermal model shows ±5% and ±4% errors for the electrical and thermal models, respectively.


2021 ◽  
Vol 850 (1) ◽  
pp. 012023
Author(s):  
G Trilok ◽  
N Gnanasekaran

Abstract Porous medium modelling technique has opened up ways for number of numerical studies to investigate the performance of many devices that involve heat exchanging process. Such modelling technique not only avoids huge cost and time as compared to experimental analysis but also makes computationally less time-consuming as in case of numerical simulation by exact geometry modelling of porous materials. In this regard the present paper analyses two different thermal models namely local thermal equilibrium model and local thermal non equilibrium model along with two different flow models namely Darcy flow model and Darcy extended Forchheimer model. Suitability of the mentioned models in predicting heat transfer through metal foam and wire mesh porous medium is examined subjected to variations in structural aspects of the porous medium that could be primarily represented by variation in porosity and pore density. For this purpose, a vertical channel subjected to constant heat flux capable of housing porous medium reported in literature is numerically modelled and air flow is numerically simulated through the channel. A variety of structural configuration (combination of different porosity and pore density) of the mentioned porous media are considered and among the mentioned flow and thermal models, best suited models for predicting flow and heat transfer through such medium are identified with appropriate justifications. It is revealed from the present study that, Darcy-Forchheimer and LTNE models are best suited to predict flow and heat transfer through porous media than the basic Darcy and LTE models.


2021 ◽  
Author(s):  
Zihao Yuan ◽  
Tao Zhang ◽  
Jeroen Van Duren ◽  
Ayse K. Coskun

Abstract Lab-grown diamond heat spreaders are becoming attractive solutions compared to traditional copper heat spreaders due to their high thermal conductivity, the ability to directly bond them on silicon, and allow for an ultra-thin silicon layer. Researchers have developed various thermal models and prototypes of lab-grown diamond heat spreaders to evaluate their cooling performance and heat spreading ability. The majority of existing thermal models are built using finite-element method (FEM) based simulators such as COMSOL and ANSYS. However, such commercial simulators are computationally expensive and lead to long solution times along with large memory requirements. These limitations make commercial simulators unsuitable for evaluating numerous design alternatives or runtime scenarios for real-world high-performance processors. Because of this modeling challenge, none of the existing works have evaluated the thermal behavior of lab-grown diamond heat spreaders on real-world high-performance processors running realistic application benchmarks. Recently, we have developed a parallel compact thermal simulator, PACT, that is able to carry out fast and accurate steady-state and transient thermal simulations and can be extended to support emerging integration and cooling technologies. In this paper, we use PACT to evaluate the steady-state and transient cooling performance of lab-grown diamond heat spreaders against traditional copper heat spreaders on various real-world high-performance processors (e.g., Intel i7 6950X, IBM Power9, and PicoSoC). By using PACT with architectural performance and power simulators such as Sniper and McPAT, we are able to run transient simulations with realistic benchmarks. Simulation results show that lab-grown diamond heat spreaders achieve maximum temperature and thermal gradient reductions of up to 26.73 °C and 13.75 °C when compared to traditional copper heat spreaders, respectively. The maximum steady-state and transient simulation times of PACT for the real-world high-performance chips and realistic applications used in our experiments are 259 s and 22 min, respectively.


2021 ◽  
Vol 10 (5) ◽  
pp. 2327-2336
Author(s):  
Mohammad Tolou Askari ◽  
Mohammad Javad Mohammadi ◽  
Jagadeesh Pasupuleti ◽  
Mehrdad Tahmasebi ◽  
Shangari K. Raveendran ◽  
...  

Hot spot as well as top oil temperatures have played the most effective parameters on the life of the electrical transformers. The prognostication of these factors is very vital for determining the residual life of the electrical transformers in the transmission and distribution systems. Thus, an accurate mathematical method is required to calculate the critical temperature such as hot spot and top oil temperature based on the different types of thermal models. In this study calculates the service life of the transformers based on an accurate top oil temperature. Accordingly, An approach solution is given for calculating the thermal model. Also, findings are validated with true temperatures. Finally, this method is implemented on 2500 KVA electrical transformer.


2021 ◽  
Vol 188 ◽  
pp. 106363
Author(s):  
Geqi Yan ◽  
Kaixin Liu ◽  
Ze Hao ◽  
Hao Li ◽  
Zhengxiang Shi

Author(s):  
Ti Dong ◽  
Yiwei Wang ◽  
Wenjiong Cao ◽  
Weijiang Zhang ◽  
Fangming Jiang

Sign in / Sign up

Export Citation Format

Share Document