Naked singularities in self-similar spherical gravitational collapse

1987 ◽  
Vol 59 (19) ◽  
pp. 2137-2140 ◽  
Author(s):  
Amos Ori ◽  
Tsvi Piran
1990 ◽  
Vol 41 (12) ◽  
pp. 3866-3868 ◽  
Author(s):  
Kayll Lake ◽  
T. Zannias

2003 ◽  
Vol 12 (05) ◽  
pp. 913-924 ◽  
Author(s):  
S. G. GHOSH ◽  
D. W. DESHKAR

We investigate the occurrence and nature of naked singularities in the gravitational collapse of an adiabatic perfect fluid in self-similar higher dimensional space–times. It is shown that strong curvature naked singularities could occur if the weak energy condition holds. Its implication for cosmic censorship conjecture is discussed. Known results of analogous studies in four dimensions can be recovered.


2003 ◽  
Vol 12 (03) ◽  
pp. 347-368 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA

A class of solutions to Einstein field equations is studied, which represents gravitational collapse of thick spherical shells made of self-similar and shear-free fluid with heat flow. It is shown that such shells satisfy all the energy conditions, and the corresponding collapse always forms naked singularities.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550025 ◽  
Author(s):  
João Marto ◽  
Yaser Tavakoli ◽  
Paulo Vargas Moniz

We consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology (LQC), we analyze the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter γ, there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case γ ~ 1, we find an interesting tracking behavior between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a nonsingular black hole is forming, at the corresponding collapse final stages.


2004 ◽  
Vol 607 (2) ◽  
pp. 879-889 ◽  
Author(s):  
Masakatsu Murakami ◽  
Katsunobu Nishihara ◽  
Tomoyuki Hanawa

Sign in / Sign up

Export Citation Format

Share Document