Interpretation of the exchange-correlation potential of the density-functional theory

1990 ◽  
Vol 65 (20) ◽  
pp. 2608-2608 ◽  
Author(s):  
Á. Nagy
2010 ◽  
Vol 09 (06) ◽  
pp. 619-622
Author(s):  
BOTHINA A. HAMAD

In this work, a theoretical study of the structural, electronic and magnetic properties are presented for Mn 0.5 Ni 0.5 alloyed overlayer adsorbed on Cu (001) surface. The calculations were performed using the density functional theory (DFT) and the exchange-correlation potential was treated by the generalized gradient approximation (GGA). The system was fully relaxed except for the central layer, which yields to outward relaxations and inward Mn and Ni surface atoms, respectively in the ferromagnetic and antiferromagnetic configurations. The in-plane ferromagnetic configuration was found to be more stable than the antiferromagnetic one by 25 meV/atom. The local magnetic moments of Mn atoms were found to be about 4 μ B , whereas those of the Ni atoms where found to be 0.46 μ B .


2009 ◽  
Vol 87 (10) ◽  
pp. 1268-1272 ◽  
Author(s):  
John P. Perdew ◽  
Espen Sagvolden

The exact exchange-correlation potential of Kohn–Sham density functional theory is known to jump discontinuously by a spatial constant as the average electron number, N, crosses an integer in an open system of fluctuating electron number, with important physical consequences for charge transfers and band gaps. We have recently constructed an essentially exact exchange-correlation potential vxc for N electrons (0 ≤ N ≤ 2) in the presence of a –1/r external potential, i.e., for a ground ensemble of H+ ion, H atom, and H– ion densities. That construction illustrates the discontinuity at N = 1, where it equals IH – AH, the positive difference between the ionization energy and the electron affinity of the hydrogen atom. Here we construct the corresponding essentially exact spin-up and spin-down exchange-correlation potentials vxc,↑ and vxc,↓ of the Kohn–Sham spin-density functional theory, more commonly used for electronic structure calculations, for the ground ensemble with most-negative z-component of spin (or equivalently in the presence of a uniform magnetic field of infinitesimal strength). The potentials vxc, vxc,↑, and vxc,↓, which vanish as r → ∞ (except when N approaches an integer from above), are identical for 0 ≤ N ≤ 1 and for N = 2 but not for 1 < N < 2. We find that the majority or spin-down potential has a spatially constant discontinuity at N = 1 equal to IH – AH. The minority or spin-up potential has a discontinuity which is this constant in one order of limits, but is a spatially varying function in a different order of limits. This order-of-limits problem is a consequence of a special circumstance: the vanishing of the spin-up density at N = 1.


Sign in / Sign up

Export Citation Format

Share Document