Statistical Dependence of Inertial Range Properties on Large Scales in a High-Reynolds-Number Shear Flow

1996 ◽  
Vol 77 (11) ◽  
pp. 2218-2221 ◽  
Author(s):  
Katepalli R. Sreenivasan ◽  
Gustavo Stolovitzky
2017 ◽  
Vol 824 ◽  
pp. 1-4 ◽  
Author(s):  
Steven A. Balbus

Rotating flow in which the angular velocity decreases outward while the angular momentum increases is known as ‘quasi-Keplerian’. Despite the general tendency of shear flow to break down into turbulence, this type of flow seems to maintain stability at very large Reynolds number, even when nonlinearly perturbed, a behaviour that strongly influences our understanding of astrophysical accretion discs. Investigating these flows in the laboratory is difficult because secondary Ekman flows, caused by the retaining Couette cylinders, can become turbulent on their own. A recent high Reynolds number numerical study by Lopez & Avila (J. Fluid Mech., vol. 817, 2017, pp. 21–34) reconciles apparently discrepant laboratory experiments by confirming that this secondary flow recedes toward the axial boundaries of the container as the Reynolds number is increased, a result that enhances our understanding of nonlinear quasi-Keplerian flow stability.


2015 ◽  
Vol 92 (2) ◽  
Author(s):  
Ilia V. Roisman ◽  
Antonio Criscione ◽  
Cameron Tropea ◽  
Deepak Kumar Mandal ◽  
Alidad Amirfazli

2007 ◽  
Vol 591 ◽  
pp. 379-391 ◽  
Author(s):  
DAVID G. DRITSCHEL ◽  
CHUONG V. TRAN ◽  
RICHARD K. SCOTT

Recent mathematical results have shown that a central assumption in the theory of two-dimensional turbulence proposed by Batchelor (Phys. Fluids, vol. 12, 1969, p. 233) is false. That theory, which predicts a χ2/3k−1 enstrophy spectrum in the inertial range of freely-decaying turbulence, and which has evidently been successful in describing certain aspects of numerical simulations at high Reynolds numbers Re, assumes that there is a finite, non-zero enstrophy dissipation χ in the limit of infinite Re. This, however, is not true for flows having finite vorticity. The enstrophy dissipation in fact vanishes.We revisit Batchelor's theory and propose a simple modification of it to ensure vanishing χ in the limit Re → ∞. Our proposal is supported by high Reynolds number simulations which confirm that χ decays like 1/ln Re, and which, following the time of peak enstrophy dissipation, exhibit enstrophy spectra containing an increasing proportion of the total enstrophy 〈ω2〉/2 in the inertial range as Re increases. Together with the mathematical analysis of vanishing χ, these observations motivate a straightforward and, indeed, alarmingly simple modification of Batchelor's theory: just replace Batchelor's enstrophy spectrum χ2/3k−1 with 〈ω2〉 k−1 (ln Re)−1).


2017 ◽  
Vol 122 (4) ◽  
pp. 3081-3105 ◽  
Author(s):  
Zheyu Zhou ◽  
Xiao Yu ◽  
Tian-Jian Hsu ◽  
Fengyan Shi ◽  
W. Rockwell Geyer ◽  
...  

1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

Sign in / Sign up

Export Citation Format

Share Document