scholarly journals Gravity-Sensitive Quantum Dynamics in Cold Atoms

2004 ◽  
Vol 93 (16) ◽  
Author(s):  
Z.-Y. Ma ◽  
M. B. d’Arcy ◽  
S. A. Gardiner
Keyword(s):  
2021 ◽  
Vol 9 ◽  
Author(s):  
Masaaki Tokieda ◽  
Shimpei Endo

We analytically study quantum dissipative dynamics described by the Caldirola-Kanai model with inter-particle interactions. We have found that the dissipative quantum dynamics of the Caldirola-Kanai model can be exactly mapped to a dissipationless quantum dynamics under a negative external harmonic potential, even when the particles are strongly interacting. In particular, we show that the mapping is valid for the unitary Fermi gas, which is relevant for cold atoms and nuclear matters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
William Dubosclard ◽  
Seungjin Kim ◽  
Carlos L. Garrido Alzar

AbstractCold atom quantum sensors based on atom interferometry are among the most accurate instruments used in fundamental physics, metrology, and foreseen for autonomous inertial navigation. However, they typically have optically complex, cumbersome, and low-bandwidth atom detection systems, limiting their practical applications. Here, we demonstrate an enabling technology for high-bandwidth, compact, and nondestructive detection of cold atoms, using microwave radiation. We measure the reflected microwave signal to coherently and distinctly detect the population of single quantum states with a bandwidth close to 30 kHz and a design destructivity that we set to 0.04%. We use a horn antenna and free-falling molasses cooled atoms in order to demonstrate the feasibility of this technique in conventional cold atom interferometers. This technology, combined with coplanar waveguides used as microwave sources, provides a basic design building block for detection in future atom chip-based compact quantum inertial sensors.


1996 ◽  
Vol 49 (4) ◽  
pp. 777 ◽  
Author(s):  
Wenyu Chen ◽  
S Dyrting ◽  
GJ Milburn

In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. We describe the quantum dynamics for the cases of regular and chaotic classical dynamics. The effect of spontaneous emission and external noise is also discussed.


2004 ◽  
Vol 116 ◽  
pp. 247-252 ◽  
Author(s):  
Y. Colombe ◽  
B. Mercier ◽  
H. Perrin ◽  
V. Lorent
Keyword(s):  

2016 ◽  
Vol 12 (1) ◽  
pp. 4172-4177
Author(s):  
Abdul Malek

The denial of the existence of contradiction is at the root of all idealism in epistemology and the cause for alienations.  This alienation has become a hindrance for the understanding of the nature and the historical evolution mathematics itself and its role as an instrument in the enquiry of the physical universe (1). A dialectical materialist approach incorporating  the role of the contradiction of the unity of the opposites, chance and necessity etc., can provide a proper understanding of the historical evolution of mathematics and  may ameliorate  the negative effect of the alienation in modern theoretical physics and cosmology. The dialectical view also offers a more plausible materialist interpretation of the bewildering wave-particle duality in quantum dynamics (2).


Author(s):  
Walter Dittrich ◽  
Martin Reuter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document