scholarly journals Circular polarization of gravitational waves from early-Universe helical turbulence

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Grigol Gogoberidze ◽  
Sayan Mandal ◽  
Alberto Roper Pol
2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545005
Author(s):  
Qing-Guo Huang

Gravitational waves can escape from the big bang and can be taken as a probe to the physics, in particular the inflation, in the early universe. Planck scale is a fundamental scale for quantum theory of gravity. Requiring the excursion distance of inflaton in the field space during inflation yields an upper bound on the tensor-to-scalar ratio. For example, [Formula: see text] for [Formula: see text]. In the typical inflationary scenario, we predict [Formula: see text] and [Formula: see text] which are consistent with Planck data released in 2015 quite well. Subtracting the contribution of thermal dust measured by Planck, BICEP2 data implies [Formula: see text] which is the tightest bound on the tensor-to-scalar ratio from current experiments.


2005 ◽  
Vol 95 (15) ◽  
Author(s):  
Tina Kahniashvili ◽  
Grigol Gogoberidze ◽  
Bharat Ratra

2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


2017 ◽  
Vol 119 (22) ◽  
Author(s):  
Sébastien Galtier ◽  
Sergey V. Nazarenko

2014 ◽  
Vol 2014 (01) ◽  
pp. 040-040 ◽  
Author(s):  
Ryusuke Jinno ◽  
Takeo Moroi ◽  
Kazunori Nakayama

2009 ◽  
Vol 18 (14) ◽  
pp. 2329-2335 ◽  
Author(s):  
IVÁN AGULLÓ ◽  
JOSÉ NAVARRO-SALAS ◽  
GONZALO J. OLMO ◽  
LEONARD PARKER

Inflationary cosmology has proven to be the most successful at predicting the properties of the anisotropies observed in the cosmic microwave background (CMB). In this essay we show that quantum field renormalization significantly influences the generation of primordial perturbations and hence the expected measurable imprint of cosmological inflation on the CMB. However, the new predictions remain in agreement with observation, and in fact favor the simplest forms of inflation. In the near future, observations of the influence of gravitational waves from the early universe on the CMB will test our new predictions.


Sign in / Sign up

Export Citation Format

Share Document