Cosmic Microwave Background
Recently Published Documents





Michael Kramer

We experience a golden era in testing and exploring relativistic gravity. Whether it is results from gravitational-wave detectors, satellite or lab experiments, radio astronomy plays an important complementary role. Here, one can mention the cosmic microwave background, black hole imaging and, obviously, binary pulsars. This talk will concentrate on the latter and new results from studies of strongly self-gravitating bodies with unrivalled precision. This presentation compares the results to other methods, discusses implications for other areas of relativistic astrophysics and will give an outlook of what we can expect from new instruments in the near future.

Craig Hogan ◽  
Stephan Meyer

Abstract We consider the hypothesis that nonlocal, omnidirectional, causally-coherent quantum entanglement of inflationary horizons may account for some well-known measured anomalies of Cosmic Microwave Background (CMB) anisotropy on large angular scales. It is shown that causal coherence can lead to less cosmic variance in the large-angle power spectrum ${C}_\ell$ of primordial curvature perturbations on spherical horizons than predicted by the standard model of locality in effective field theory, and to new symmetries of the angular correlation function ${C}(\Theta)$. Causal considerations are used to construct an approximate analytic model for ${C}(\Theta)$ on angular scales larger than a few degrees. Allowing for uncertainties from the unmeasured intrinsic dipole and from Galactic foreground subtraction, causally-coherent constraints are shown to be consistent with measured CMB correlations on large angular scales. Reduced cosmic variance will enable powerful tests of the hypothesis with better foreground subtraction and higher fidelity measurements on large angular scales.

2022 ◽  
Vol 2022 (01) ◽  
pp. 001
Sarvesh Kumar Yadav ◽  
Rajib Saha

Abstract In the era of precision cosmology, accurate estimation of cosmological parameters is based upon the implicit assumption of the Gaussian nature of Cosmic Microwave Background (CMB) radiation. Therefore, an important scientific question to ask is whether the observed CMB map is consistent with Gaussian prediction. In this work, we extend previous studies based on CMB spherical harmonic phases (SHP) to examine the validity of the hypothesis that the temperature field of the CMB is consistent with a Gaussian random field (GRF). The null hypothesis is that the corresponding CMB SHP are independent and identically distributed in terms of a uniform distribution in the interval [0, 2π] [1,2]. We devise a new model-independent method where we use ordered and non-parametric Rao's statistic, based on sample arc-lengths to comprehensively test uniformity and independence of SHP for a given ℓ mode and independence of nearby ℓ mode SHP. We performed our analysis on the scales limited by spherical harmonic modes ≤ 128, to restrict ourselves to signal-dominated regions. To find the non-uniform or dependent sets of SHP, we calculate the statistic for the data and 10000 Monte Carlo simulated uniformly random sets of SHP and use 0.05 and 0.001 α levels to distinguish between statistically significant and highly significant detections. We first establish the performance of our method using simulated Gaussian, non-Gaussian CMB temperature maps, along with observed non-Gaussian 100 and 143 GHz Planck channel maps. We find that our method, performs efficiently and accurately in detecting phase correlations generated in all of the non-Gaussian simulations and observed foreground contaminated 100 and 143 GHz Planck channel temperature maps. We apply our method on Planck satellite mission's final released CMB temperature anisotropy maps- COMMANDER, SMICA, NILC, and SEVEM along with WMAP 9 year released ILC map. We report that SHP corresponding to some of the m-modes are non-uniform, some of the ℓ mode SHP and neighboring mode pair SHP are correlated in cleaned CMB maps. The detection of non-uniformity or correlation in the SHP indicates the presence of non-Gaussian signals in the foreground minimized CMB maps.

2022 ◽  
Vol 924 (1) ◽  
pp. 11
Carlos Hervías-Caimapo ◽  
Anna Bonaldi ◽  
Michael L. Brown ◽  
Kevin M. Huffenberger

Abstract Contamination by polarized foregrounds is one of the biggest challenges for future polarized cosmic microwave background (CMB) surveys and the potential detection of primordial B-modes. Future experiments, such as Simons Observatory (SO) and CMB-S4, will aim at very deep observations in relatively small (f sky ∼ 0.1) areas of the sky. In this work, we investigate the forecasted performance, as a function of the survey field location on the sky, for regions over the full sky, balancing between polarized foreground avoidance and foreground component separation modeling needs. To do this, we simulate observations by an SO-like experiment and measure the error bar on the detection of the tensor-to-scalar ratio, σ(r), with a pipeline that includes a parametric component separation method, the Correlated Component Analysis, and the use of the Fisher information matrix. We forecast the performance over 192 survey areas covering the full sky and also for optimized low-foreground regions. We find that modeling the spectral energy distribution of foregrounds is the most important factor, and any mismatch will result in residuals and bias in the primordial B-modes. At these noise levels, σ(r) is not especially sensitive to the level of foreground contamination, provided the survey targets the least-contaminated regions of the sky close to the Galactic poles.

2022 ◽  
Vol 924 (2) ◽  
pp. 51
Zara Abdurashidova ◽  
James E. Aguirre ◽  
Paul Alexander ◽  
Zaki S. Ali ◽  
Yanga Balfour ◽  

Abstract Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment’s first upper limits on the power spectrum of 21 cm fluctuations at z ∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold by z ∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of the z ∼ 8 neutral IGM to 27 K 〈 T ¯ S 〉 630 K (2.3 K 〈 T ¯ S 〉 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates the z ∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. The z ∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L r,ν /SFR > 4 × 1024 W Hz−1 M ⊙ − 1 yr and L X /SFR < 7.6 × 1039 erg s−1 M ⊙ − 1 yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.

2022 ◽  
Vol 82 (1) ◽  
Sai Wang ◽  
Zhi-Chao Zhao

AbstractTwo gravitational wave events, i.e. GW200105 and GW200115, were observed by the Advanced LIGO and Virgo detectors recently. In this work, we show that they can be explained by a scenario of primordial black hole binaries that are formed in the early Universe. The merger rate predicted by such a scenario could be consistent with the one estimated from LIGO and Virgo, even if primordial black holes constitute a fraction of cold dark matter. The required abundance of primordial black holes is compatible with the existing upper limits from microlensing, caustic crossing and cosmic microwave background observations.

2021 ◽  
Sangwha Yi

In the general relativity theory, we find electro-magnetic wave functions of Cosmic Microwave Background and Schwarzschild space-time. Specially, this article is that electromagnetic wave equations are treated by gauge fixing equations in Robertson-Walker space-time and Schwarzschild space-time.

2021 ◽  
Vol 127 (27) ◽  
A. Ricciardone ◽  
L. Valbusa Dall’Armi ◽  
N. Bartolo ◽  
D. Bertacca ◽  
M. Liguori ◽  

Foundations ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-5
Eugene Oks

Many totally different kinds of astrophysical observations demonstrated that, in our universe, there exists a preferred direction. Specifically, from observations in a wide range of frequencies, the alignment of various preferred directions in different data sets was found. Moreover, the observed Cosmic Microwave Background (CMB) quadrupole, CMB octopole, radio and optical polarizations from distant sources also indicate the same preferred direction. While this hints at a gravitational pull from the “outside”, the observational data from the Plank satellite showed that the bulk flow velocity was relatively small: much smaller than was initially thought. In the present paper we propose a configuration where two three-dimensional universes (one of which is ours) are embedded in a four-dimensional space and rotate about their barycenter in such a way that the centrifugal force nearly (but not exactly) compensates their mutual gravitational pull. This would explain not only the existence of a preferred direction for each of the three-dimensional universes (the direction to the other universe), but also the fact that the bulk flow velocity, observed in our universe, is relatively small. We point out that this configuration could also explain the perplexing features of the Unidentified Aerial Phenomena (UAP), previously called Unidentified Flying Objects (UFOs), recorded by various detection systems—the features presented in the latest official report by the US Office of the Director of National Intelligence. Thus, the proposed configuration of the two rotating, parallel three-dimensional universes seems to explain both the variety of astrophysical observations and (perhaps) the observed features of the UAP.

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 506
Matteo Martinelli ◽  
Santiago Casas

In this review, we outline the expected tests of gravity that will be achieved at cosmological scales in the upcoming decades. We focus mainly on constraints on phenomenologically parameterized deviations from general relativity, which allow to test gravity in a model-independent way, but also review some of the expected constraints obtained with more physically motivated approaches. After reviewing the state-of-the-art for such constraints, we outline the expected improvement that future cosmological surveys will achieve, focusing mainly on future large-scale structures and cosmic microwave background surveys but also looking into novel probes on the nature of gravity. We will also highlight the necessity of overcoming accuracy issues in our theoretical predictions, issues that become relevant due to the expected sensitivity of future experiments.

Sign in / Sign up

Export Citation Format

Share Document